sv2uv.c 3.0 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135
  1. /* sv2uv.c CCMATH mathematics library source code.
  2. *
  3. * Copyright (C) 2000 Daniel A. Atkinson All rights reserved.
  4. * This code may be redistributed under the terms of the GNU library
  5. * public license (LGPL). ( See the lgpl.license file for details.)
  6. * ------------------------------------------------------------------------
  7. */
  8. #include <stdlib.h>
  9. #include "ccmath.h"
  10. int sv2uv(double *d, double *a, double *u, int m, double *v, int n)
  11. {
  12. double *p, *p1, *q, *pp, *w, *e;
  13. double s, t, h, r, sv;
  14. int i, j, k, mm, nm, ms;
  15. if (m < n)
  16. return -1;
  17. w = (double *)calloc(m + n, sizeof(double));
  18. e = w + m;
  19. for (i = 0, mm = m, p = a; i < n; ++i, --mm, p += n + 1) {
  20. if (mm > 1) {
  21. sv = h = 0.;
  22. for (j = 0, q = p, s = 0.; j < mm; ++j, q += n) {
  23. w[j] = *q;
  24. s += *q * *q;
  25. }
  26. if (s > 0.) {
  27. h = sqrt(s);
  28. if (*p < 0.)
  29. h = -h;
  30. s += *p * h;
  31. s = 1. / s;
  32. t = 1. / (w[0] += h);
  33. sv = 1. + fabs(*p / h);
  34. for (k = 1, ms = n - i; k < ms; ++k) {
  35. for (j = 0, q = p + k, r = 0.; j < mm; q += n)
  36. r += w[j++] * *q;
  37. r = r * s;
  38. for (j = 0, q = p + k; j < mm; q += n)
  39. *q -= r * w[j++];
  40. }
  41. for (j = 1, q = p; j < mm;)
  42. *(q += n) = w[j++] * t;
  43. }
  44. *p = sv;
  45. d[i] = -h;
  46. }
  47. if (mm == 1)
  48. d[i] = *p;
  49. }
  50. ldumat(a, u, m, n);
  51. for (i = 0, q = a; i < n; ++i) {
  52. for (j = 0; j < n; ++j, ++q) {
  53. if (j < i)
  54. *q = 0.;
  55. else if (j == i)
  56. *q = d[i];
  57. }
  58. }
  59. for (i = 0, mm = n, nm = n - 1, p = a; i < n; ++i, --mm, --nm, p += n + 1) {
  60. if (i && mm > 1) {
  61. sv = h = 0.;
  62. for (j = 0, q = p, s = 0.; j < mm; ++j, q += n) {
  63. w[j] = *q;
  64. s += *q * *q;
  65. }
  66. if (s > 0.) {
  67. h = sqrt(s);
  68. if (*p < 0.)
  69. h = -h;
  70. s += *p * h;
  71. s = 1. / s;
  72. t = 1. / (w[0] += h);
  73. sv = 1. + fabs(*p / h);
  74. for (k = 1, ms = n - i; k < ms; ++k) {
  75. for (j = 0, q = p + k, r = 0.; j < mm; q += n)
  76. r += w[j++] * *q;
  77. for (j = 0, q = p + k, r *= s; j < mm; q += n)
  78. *q -= r * w[j++];
  79. }
  80. for (k = 0, p1 = u + i; k < m; ++k, p1 += m) {
  81. for (j = 0, q = p1, r = 0.; j < mm;)
  82. r += w[j++] * *q++;
  83. for (j = 0, q = p1, r *= s; j < mm;)
  84. *q++ -= r * w[j++];
  85. }
  86. }
  87. *p = sv;
  88. d[i] = -h;
  89. }
  90. if (mm == 1)
  91. d[i] = *p;
  92. p1 = p + 1;
  93. if (nm > 1) {
  94. sv = h = 0.;
  95. for (j = 0, q = p1, s = 0.; j < nm; ++j, ++q)
  96. s += *q * *q;
  97. if (s > 0.) {
  98. h = sqrt(s);
  99. if (*p1 < 0.)
  100. h = -h;
  101. sv = 1. + fabs(*p1 / h);
  102. s += *p1 * h;
  103. s = 1. / s;
  104. t = 1. / (*p1 += h);
  105. for (k = n, ms = n * (n - i); k < ms; k += n) {
  106. for (j = 0, q = p1, pp = p1 + k, r = 0.; j < nm; ++j)
  107. r += *q++ * *pp++;
  108. for (j = 0, q = p1, pp = p1 + k, r *= s; j < nm; ++j)
  109. *pp++ -= r * *q++;
  110. }
  111. for (j = 1, q = p1 + 1; j < nm; ++j)
  112. *q++ *= t;
  113. }
  114. *p1 = sv;
  115. e[i] = -h;
  116. }
  117. if (nm == 1)
  118. e[i] = *p1;
  119. }
  120. ldvmat(a, v, n);
  121. qrbdv(d, e, u, m, v, n);
  122. for (i = 0; i < n; ++i) {
  123. if (d[i] < 0.) {
  124. d[i] = -d[i];
  125. for (j = 0, p = v + i; j < n; ++j, p += n)
  126. *p = -*p;
  127. }
  128. }
  129. free(w);
  130. return 0;
  131. }