123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179 |
- /*!
- \file lib/gis/distance.c
-
- \brief GIS Library - Distance calculation functions.
-
- WARNING: this code is preliminary and may be changed,
- including calling sequences to any of the functions
- defined here.
-
- (C) 2001-2009, 2011 by the GRASS Development Team
-
- This program is free software under the GNU General Public License
- (>=v2). Read the file COPYING that comes with GRASS for details.
-
- \author Original author CERL
- */
- #include <math.h>
- #include <grass/gis.h>
- #include <grass/glocale.h>
- static double min4(double, double, double, double);
- static double min2(double, double);
- static struct state {
- int projection;
- double factor;
- } state;
- static struct state *st = &state;
- /*!
- \brief Begin distance calculations.
-
- Initializes the distance calculations. It is used both for the
- planimetric and latitude-longitude projections.
-
- \return 0 if projection has no metrix (ie. imagery)
- \return 1 if projection is planimetric
- \return 2 if projection is latitude-longitude
- */
- int G_begin_distance_calculations(void)
- {
- double a, e2;
- st->factor = 1.0;
- switch (st->projection = G_projection()) {
- case PROJECTION_LL:
- G_get_ellipsoid_parameters(&a, &e2);
- G_begin_geodesic_distance(a, e2);
- return 2;
- default:
- st->factor = G_database_units_to_meters_factor();
- if (st->factor <= 0.0) {
- st->factor = 1.0; /* assume meter grid */
- return 0;
- }
- return 1;
- }
- }
- /*!
- \brief Returns distance in meters.
-
- This routine computes the distance, in meters, from
- <i>x1</i>,<i>y1</i> to <i>x2</i>,<i>y2</i>. If the projection is
- latitude-longitude, this distance is measured along the
- geodesic. Two routines perform geodesic distance calculations.
-
- \param e1,n1 east-north coordinates of first point
- \param e2,n2 east-north coordinates of second point
-
- \return distance
- */
- double G_distance(double e1, double n1, double e2, double n2)
- {
- if (st->projection == PROJECTION_LL)
- return G_geodesic_distance(e1, n1, e2, n2);
- else
- return st->factor * hypot(e1 - e2, n1 - n2);
- }
- /*!
- \brief Returns distance between two line segments in meters.
-
- \param ax1,ay1,ax2,ay2 first segment
- \param bx1,by1,bx2,by2 second segment
-
- \return distance value
- */
- double G_distance_between_line_segments(double ax1, double ay1,
- double ax2, double ay2,
- double bx1, double by1,
- double bx2, double by2)
- {
- double ra, rb;
- double x, y;
- /* if the segments intersect, then the distance is zero */
- if (G_intersect_line_segments(ax1, ay1, ax2, ay2,
- bx1, by1, bx2, by2, &ra, &rb, &x, &y) > 0)
- return 0.0;
- return
- min4(G_distance_point_to_line_segment(ax1, ay1, bx1, by1, bx2, by2),
- G_distance_point_to_line_segment(ax2, ay2, bx1, by1, bx2, by2),
- G_distance_point_to_line_segment(bx1, by1, ax1, ay1, ax2, ay2),
- G_distance_point_to_line_segment(bx2, by2, ax1, ay1, ax2, ay2)
- );
- }
- /*!
- \brief Returns distance between a point and line segment in meters.
-
- \param xp,yp point coordinates
- \param x1,y1 segment point coordinates
- \param x2,y2 segment point coordinates
-
- \return distance
- */
- double G_distance_point_to_line_segment(double xp, double yp,
- double x1, double y1, double x2,
- double y2)
- {
- double dx, dy;
- double x, y;
- double xq, yq, ra, rb;
- int t;
- /* define the perpendicular to the segment through the point */
- dx = x1 - x2;
- dy = y1 - y2;
- if (dx == 0.0 && dy == 0.0)
- return G_distance(x1, y1, xp, yp);
- if (fabs(dy) > fabs(dx)) {
- xq = xp + dy;
- yq = (dx / dy) * (xp - xq) + yp;
- }
- else {
- yq = yp + dx;
- xq = (dy / dx) * (yp - yq) + xp;
- }
- /* find the intersection of the perpendicular with the segment */
- t = G_intersect_line_segments(xp, yp, xq, yq, x1, y1, x2, y2, &ra,
- &rb, &x, &y);
- switch (t) {
- case 0:
- case 1:
- break;
- default:
- /* parallel/colinear cases shouldn't occur with perpendicular lines */
- G_warning(_("%s: shouldn't happen: "
- "code=%d P=(%f,%f) S=(%f,%f)(%f,%f)"),
- "G_distance_point_to_line_segment", t, xp, yp, x1, y1, x2, y2);
- return -1.0;
- }
- /* if x,y lies on the segment, then the distance is from to x,y */
- if (rb >= 0 && rb <= 1.0)
- return G_distance(x, y, xp, yp);
- /* otherwise the distance is the short of the distances to the endpoints
- * of the segment
- */
- return min2(G_distance(x1, y1, xp, yp), G_distance(x2, y2, xp, yp));
- }
- static double min4(double a, double b, double c, double d)
- {
- return min2(min2(a, b), min2(c, d));
- }
- static double min2(double a, double b)
- {
- return a < b ? a : b;
- }
|