123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329 |
- /*
- ****************************************************************************
- *
- * MODULE: Vector library
- *
- * AUTHOR(S): Original author CERL, probably Dave Gerdes.
- * Update to GRASS 5.7 Radim Blazek.
- * Update to GRASS 7.0 Markus Metz
- *
- * PURPOSE: Lower level functions for reading/writing/manipulating vectors.
- *
- * COPYRIGHT: (C) 2009 by the GRASS Development Team
- *
- * This program is free software under the GNU General Public
- * License (>=v2). Read the file COPYING that comes with GRASS
- * for details.
- *
- *****************************************************************************/
- #include <math.h>
- #include <grass/vector.h>
- #ifndef HUGE_VAL
- #define HUGE_VAL 9999999999999.0
- #endif
- /*
- * fills BPoints (must be inited previously) by points from input
- * array LPoints
- *
- * each input LPoints[i] must have at least 2 points
- *
- * returns number of points or -1 on error
- */
- int dig_get_poly_points(int n_lines, struct line_pnts **LPoints,
- int *direction, /* line direction: > 0 or < 0 */
- struct line_pnts *BPoints)
- {
- register int i, j, point, start, end, inc;
- struct line_pnts *Points;
- int n_points;
- BPoints->n_points = 0;
- if (n_lines < 1) {
- return 0;
- }
- /* Calc required space */
- n_points = 0;
- for (i = 0; i < n_lines; i++) {
- Points = LPoints[i];
- n_points += Points->n_points - 1; /* each line from first to last - 1 */
- }
- n_points++; /* last point */
- if (0 > dig_alloc_points(BPoints, n_points))
- return (-1);
- point = 0;
- j = 0;
- for (i = 0; i < n_lines; i++) {
- Points = LPoints[i];
- if (direction[i] > 0) {
- start = 0;
- end = Points->n_points - 1;
- inc = 1;
- }
- else {
- start = Points->n_points - 1;
- end = 0;
- inc = -1;
- }
- for (j = start; j != end; j += inc) {
- BPoints->x[point] = Points->x[j];
- BPoints->y[point] = Points->y[j];
- point++;
- }
- }
- /* last point */
- BPoints->x[point] = Points->x[j];
- BPoints->y[point] = Points->y[j];
- BPoints->n_points = n_points;
- return (BPoints->n_points);
- }
- /*
- * calculate signed area size for polygon
- *
- * points must be closed polygon with first point = last point
- *
- * returns signed area, positive for clockwise, negative for
- * counterclockwise, 0 for degenerate
- */
- int dig_find_area_poly(struct line_pnts *Points, double *totalarea)
- {
- int i;
- double *x, *y;
- double tot_area;
- x = Points->x;
- y = Points->y;
- /* line integral: *Points do not need to be pruned */
- /* surveyor's formula is more common, but more prone to
- * fp precision limit errors, and *Points would need to be pruned */
- tot_area = 0.0;
- for (i = 1; i < Points->n_points; i++) {
- tot_area += (x[i] - x[i - 1]) * (y[i] + y[i - 1]);
- }
- *totalarea = 0.5 * tot_area;
- return (0);
- }
- /*
- * find orientation of polygon (clockwise or counterclockwise)
- * in theory faster than signed area for > 4 vertices, but is not robust
- * against special cases
- * use dig_find_area_poly instead
- *
- * points must be closed polygon with first point = last point
- *
- * this code uses bits and pieces from softSurfer and GEOS
- * (C) 2000 softSurfer (www.softsurfer.com)
- * (C) 2006 Refractions Research Inc.
- *
- * copes with partially collapsed boundaries and 8-shaped isles
- * the code is long and not much faster than dig_find_area_poly
- * it can be written much shorter, but that comes with speed penalty
- *
- * returns orientation, positive for CW, negative for CCW, 0 for degenerate
- */
- double dig_find_poly_orientation(struct line_pnts *Points)
- {
- unsigned int pnext, pprev, pcur = 0;
- unsigned int lastpoint = Points->n_points - 1;
- double *x, *y, orientation;
- x = Points->x;
- y = Points->y;
- /* first find leftmost highest vertex of the polygon */
- for (pnext = 1; pnext < lastpoint; pnext++) {
- if (y[pnext] < y[pcur])
- continue;
- else if (y[pnext] == y[pcur]) { /* just as high */
- if (x[pnext] > x[pcur]) /* but to the right */
- continue;
- if (x[pnext] == x[pcur]) { /* duplicate point, self-intersecting polygon ? */
- pprev = (pcur == 0 ? lastpoint - 1 : pcur - 1);
- if (y[pnext - 1] < y[pprev])
- continue;
- }
- }
- pcur = pnext; /* a new leftmost highest vertex */
- }
- /* Points are not pruned, so ... */
- pnext = pcur;
- pprev = pcur;
- /* find next distinct point */
- do {
- if (pnext < lastpoint - 1)
- pnext++;
- else
- pnext = 0;
- } while (pnext != pcur && x[pcur] == x[pnext] && y[pcur] == y[pnext]);
- /* find previous distinct point */
- do {
- if (pprev > 0)
- pprev--;
- else
- pprev = lastpoint - 1;
- } while (pprev != pcur && x[pcur] == x[pprev] && y[pcur] == y[pprev]);
-
- /* orientation at vertex pcur == signed area for triangle pprev, pcur, pnext
- * rather use robust determinant of Olivier Devillers? */
- orientation = (x[pnext] - x[pprev]) * (y[pcur] - y[pprev])
- - (x[pcur] - x[pprev]) * (y[pnext] - y[pprev]);
- if (orientation)
- return orientation;
- /* orientation is 0, can happen with dirty boundaries, next check */
- /* find rightmost highest vertex of the polygon */
- pcur = 0;
- for (pnext = 1; pnext < lastpoint; pnext++) {
- if (y[pnext] < y[pcur])
- continue;
- else if (y[pnext] == y[pcur]) { /* just as high */
- if (x[pnext] < x[pcur]) /* but to the left */
- continue;
- if (x[pnext] == x[pcur]) { /* duplicate point, self-intersecting polygon ? */
- pprev = (pcur == 0 ? lastpoint - 1 : pcur - 1);
- if (y[pnext - 1] < y[pprev])
- continue;
- }
- }
- pcur = pnext; /* a new rightmost highest vertex */
- }
- /* Points are not pruned, so ... */
- pnext = pcur;
- pprev = pcur;
- /* find next distinct point */
- do {
- if (pnext < lastpoint - 1)
- pnext++;
- else
- pnext = 0;
- } while (pnext != pcur && x[pcur] == x[pnext] && y[pcur] == y[pnext]);
- /* find previous distinct point */
- do {
- if (pprev > 0)
- pprev--;
- else
- pprev = lastpoint - 1;
- } while (pprev != pcur && x[pcur] == x[pprev] && y[pcur] == y[pprev]);
-
- /* orientation at vertex pcur == signed area for triangle pprev, pcur, pnext
- * rather use robust determinant of Olivier Devillers? */
- orientation = (x[pnext] - x[pprev]) * (y[pcur] - y[pprev])
- - (x[pcur] - x[pprev]) * (y[pnext] - y[pprev]);
- if (orientation)
- return orientation;
- /* orientation is 0, next check */
- /* find leftmost lowest vertex of the polygon */
- pcur = 0;
- for (pnext = 1; pnext < lastpoint; pnext++) {
- if (y[pnext] > y[pcur])
- continue;
- else if (y[pnext] == y[pcur]) { /* just as low */
- if (x[pnext] > x[pcur]) /* but to the right */
- continue;
- if (x[pnext] == x[pcur]) { /* duplicate point, self-intersecting polygon ? */
- pprev = (pcur == 0 ? lastpoint - 1 : pcur - 1);
- if (y[pnext - 1] > y[pprev])
- continue;
- }
- }
- pcur = pnext; /* a new leftmost lowest vertex */
- }
- /* Points are not pruned, so ... */
- pnext = pcur;
- pprev = pcur;
- /* find next distinct point */
- do {
- if (pnext < lastpoint - 1)
- pnext++;
- else
- pnext = 0;
- } while (pnext != pcur && x[pcur] == x[pnext] && y[pcur] == y[pnext]);
- /* find previous distinct point */
- do {
- if (pprev > 0)
- pprev--;
- else
- pprev = lastpoint - 1;
- } while (pprev != pcur && x[pcur] == x[pprev] && y[pcur] == y[pprev]);
-
- /* orientation at vertex pcur == signed area for triangle pprev, pcur, pnext
- * rather use robust determinant of Olivier Devillers? */
- orientation = (x[pnext] - x[pprev]) * (y[pcur] - y[pprev])
- - (x[pcur] - x[pprev]) * (y[pnext] - y[pprev]);
- if (orientation)
- return orientation;
- /* orientation is 0, last check */
- /* find rightmost lowest vertex of the polygon */
- pcur = 0;
- for (pnext = 1; pnext < lastpoint; pnext++) {
- if (y[pnext] > y[pcur])
- continue;
- else if (y[pnext] == y[pcur]) { /* just as low */
- if (x[pnext] < x[pcur]) /* but to the left */
- continue;
- if (x[pnext] == x[pcur]) { /* duplicate point, self-intersecting polygon ? */
- pprev = (pcur == 0 ? lastpoint - 1 : pcur - 1);
- if (y[pnext - 1] > y[pprev])
- continue;
- }
- }
- pcur = pnext; /* a new rightmost lowest vertex */
- }
- /* Points are not pruned, so ... */
- pnext = pcur;
- pprev = pcur;
- /* find next distinct point */
- do {
- if (pnext < lastpoint - 1)
- pnext++;
- else
- pnext = 0;
- } while (pnext != pcur && x[pcur] == x[pnext] && y[pcur] == y[pnext]);
- /* find previous distinct point */
- do {
- if (pprev > 0)
- pprev--;
- else
- pprev = lastpoint - 1;
- } while (pprev != pcur && x[pcur] == x[pprev] && y[pcur] == y[pprev]);
-
- /* orientation at vertex pcur == signed area for triangle pprev, pcur, pnext
- * rather use robust determinant of Olivier Devillers? */
- orientation = (x[pnext] - x[pprev]) * (y[pcur] - y[pprev])
- - (x[pcur] - x[pprev]) * (y[pnext] - y[pprev]);
- return orientation; /* 0 for degenerate */
- }
|