123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637 |
- /*!
- * \file rbtree.c
- *
- * \brief binary search tree
- *
- * Generic balanced binary search tree (Red Black Tree) implementation
- *
- * (C) 2009 by the GRASS Development Team
- *
- * This program is free software under the GNU General Public License
- * (>=v2). Read the file COPYING that comes with GRASS for details.
- *
- * \author Original author Julienne Walker 2003, 2008
- * GRASS implementation Markus Metz, 2009
- */
- /* balanced binary search tree implementation
- *
- * this one is a Red Black Tree, no parent pointers, no threads
- * The core code comes from Julienne Walker's tutorials on binary search trees
- * original license: public domain
- * http://eternallyconfuzzled.com/tuts/datastructures/jsw_tut_rbtree.aspx
- * some ideas come from libavl (GPL >= 2)
- *
- * Red Black Trees are used to maintain a data structure with
- * search, insertion and deletion in O(log N) time
- */
- #include <assert.h>
- #include <stdlib.h>
- #include <string.h>
- #include <grass/gis.h>
- #include <grass/glocale.h>
- #include <grass/rbtree.h>
- /* internal functions */
- static struct RB_NODE *rbtree_single(struct RB_NODE *, int);
- static struct RB_NODE *rbtree_double(struct RB_NODE *, int);
- static void *rbtree_first(struct RB_TRAV *);
- static void *rbtree_last(struct RB_TRAV *trav);
- static void *rbtree_next(struct RB_TRAV *);
- static void *rbtree_previous(struct RB_TRAV *);
- static struct RB_NODE *rbtree_make_node(size_t, void *);
- static int is_red(struct RB_NODE *);
- /* create new tree and initialize
- * returns pointer to new tree, NULL for memory allocation error
- */
- struct RB_TREE *rbtree_create(rb_compare_fn *compare, size_t rb_datasize)
- {
- struct RB_TREE *tree = (struct RB_TREE *)malloc(sizeof(struct RB_TREE));
- if (tree == NULL) {
- G_warning("RB tree: Out of memory!");
- return NULL;
- }
- assert(compare);
- tree->datasize = rb_datasize;
- tree->rb_compare = compare;
- tree->count = 0;
- tree->root = NULL;
- return tree;
- }
- /* add an item to a tree
- * non-recursive top-down insertion
- * the algorithm does not allow duplicates and also does not warn about a duplicate
- * returns 1 on success, 0 on failure
- */
- int rbtree_insert(struct RB_TREE *tree, void *data)
- {
- assert(tree && data);
- if (tree->root == NULL) {
- /* create a new root node for tree */
- tree->root = rbtree_make_node(tree->datasize, data);
- if (tree->root == NULL)
- return 0;
- }
- else {
- struct RB_NODE head = { 0, 0, {0, 0} }; /* False tree root */
- struct RB_NODE *g, *t; /* Grandparent & parent */
- struct RB_NODE *p, *q; /* Iterator & parent */
- int dir = 0, last = 0;
- /* Set up helpers */
- t = &head;
- g = p = NULL;
- q = t->link[1] = tree->root;
- /* Search down the tree */
- for (;;) {
- if (q == NULL) {
- /* Insert new node at the bottom */
- p->link[dir] = q = rbtree_make_node(tree->datasize, data);
- if (q == NULL)
- return 0;
- }
- else if (is_red(q->link[0]) && is_red(q->link[1])) {
- /* Color flip */
- q->red = 1;
- q->link[0]->red = 0;
- q->link[1]->red = 0;
- }
- /* Fix red violation */
- if (is_red(q) && is_red(p)) {
- int dir2 = t->link[1] == g;
- if (q == p->link[last])
- t->link[dir2] = rbtree_single(g, !last);
- else
- t->link[dir2] = rbtree_double(g, !last);
- }
- last = dir;
- dir = tree->rb_compare(q->data, data);
- /* Stop if found. This check also disallows duplicates in the tree */
- if (dir == 0)
- break;
- dir = dir < 0;
- /* Move the helpers down */
- if (g != NULL)
- t = g;
- g = p, p = q;
- q = q->link[dir];
- }
- /* Update root */
- tree->root = head.link[1];
- }
- /* Make root black */
- tree->root->red = 0;
- tree->count++;
- return 1;
- }
- /* remove an item from a tree that matches given data
- * non-recursive top-down removal
- * returns 1 on successful removal
- * returns 0 if data item was not found
- */
- int rbtree_remove(struct RB_TREE *tree, const void *data)
- {
- struct RB_NODE head = { 0, 0, {0, 0} }; /* False tree root */
- struct RB_NODE *q, *p, *g; /* Helpers */
- struct RB_NODE *f = NULL; /* Found item */
- int dir = 1, removed = 0;
- assert(tree && data);
- if (tree->root == NULL) {
- return 0; /* empty tree, nothing to remove */
- }
- /* Set up helpers */
- q = &head;
- g = p = NULL;
- q->link[1] = tree->root;
- /* Search and push a red down */
- while (q->link[dir] != NULL) {
- int last = dir;
- /* Update helpers */
- g = p, p = q;
- q = q->link[dir];
- dir = tree->rb_compare(q->data, data);
- /* Save found node */
- if (dir == 0)
- f = q;
- dir = dir < 0;
- /* Push the red node down */
- if (!is_red(q) && !is_red(q->link[dir])) {
- if (is_red(q->link[!dir]))
- p = p->link[last] = rbtree_single(q, dir);
- else if (!is_red(q->link[!dir])) {
- struct RB_NODE *s = p->link[!last];
- if (s != NULL) {
- if (!is_red(s->link[!last]) && !is_red(s->link[last])) {
- /* Color flip */
- p->red = 0;
- s->red = 1;
- q->red = 1;
- }
- else {
- int dir2 = g->link[1] == p;
- if (is_red(s->link[last]))
- g->link[dir2] = rbtree_double(p, last);
- else if (is_red(s->link[!last]))
- g->link[dir2] = rbtree_single(p, last);
- /* Ensure correct coloring */
- q->red = g->link[dir2]->red = 1;
- g->link[dir2]->link[0]->red = 0;
- g->link[dir2]->link[1]->red = 0;
- }
- }
- }
- }
- }
- /* Replace and remove if found */
- if (f != NULL) {
- free(f->data);
- f->data = q->data;
- p->link[p->link[1] == q] = q->link[q->link[0] == NULL];
- free(q);
- q = NULL;
- tree->count--;
- removed = 1;
- }
- else
- G_debug(2, "RB tree: data not found in search tree");
- /* Update root and make it black */
- tree->root = head.link[1];
- if (tree->root != NULL)
- tree->root->red = 0;
- return removed;
- }
- /* find data item in tree
- * returns pointer to data item if found else NULL
- */
- void *rbtree_find(struct RB_TREE *tree, const void *data)
- {
- struct RB_NODE *curr_node = tree->root;
- int cmp;
- assert(tree && data);
- while (curr_node != NULL) {
- cmp = tree->rb_compare(curr_node->data, data);
- if (cmp == 0)
- return curr_node->data; /* found */
- curr_node = curr_node->link[cmp < 0];
- }
- return NULL;
- }
- /* initialize tree traversal
- * (re-)sets trav structure
- * returns 0
- */
- int rbtree_init_trav(struct RB_TRAV *trav, struct RB_TREE *tree)
- {
- assert(trav && tree);
- trav->tree = tree;
- trav->curr_node = tree->root;
- trav->first = 1;
- trav->top = 0;
- return 0;
- }
- /* traverse the tree in ascending order
- * useful to get all items in the tree non-recursively
- * struct RB_TRAV *trav needs to be initialized first
- * returns pointer to data, NULL when finished
- */
- void *rbtree_traverse(struct RB_TRAV *trav)
- {
- assert(trav);
- if (trav->curr_node == NULL) {
- if (trav->first)
- G_debug(1, "RB tree: empty tree");
- else
- G_debug(1, "RB tree: finished traversing");
- return NULL;
- }
- if (!trav->first)
- return rbtree_next(trav);
- else {
- trav->first = 0;
- return rbtree_first(trav);
- }
- }
- /* traverse the tree in descending order
- * useful to get all items in the tree non-recursively
- * struct RB_TRAV *trav needs to be initialized first
- * returns pointer to data, NULL when finished
- */
- void *rbtree_traverse_backwd(struct RB_TRAV *trav)
- {
- assert(trav);
- if (trav->curr_node == NULL) {
- if (trav->first)
- G_debug(1, "RB tree: empty tree");
- else
- G_debug(1, "RB tree: finished traversing");
- return NULL;
- }
- if (!trav->first)
- return rbtree_previous(trav);
- else {
- trav->first = 0;
- return rbtree_last(trav);
- }
- }
- /* find start point to traverse the tree in ascending order
- * useful to get a selection of items in the tree
- * magnitudes faster than traversing the whole tree
- * may return first item that's smaller or first item that's larger
- * struct RB_TRAV *trav needs to be initialized first
- * returns pointer to data, NULL when finished
- */
- void *rbtree_traverse_start(struct RB_TRAV *trav, const void *data)
- {
- int dir = 0;
- assert(trav && data);
- if (trav->curr_node == NULL) {
- if (trav->first)
- G_warning("RB tree: empty tree");
- else
- G_warning("RB tree: finished traversing");
- return NULL;
- }
- if (!trav->first)
- return rbtree_next(trav);
- /* else first time, get start node */
- trav->first = 0;
- trav->top = 0;
- while (trav->curr_node != NULL) {
- dir = trav->tree->rb_compare(trav->curr_node->data, data);
- /* exact match, great! */
- if (dir == 0)
- return trav->curr_node->data;
- else {
- dir = dir < 0;
- /* end of branch, also reached if
- * smallest item is larger than search template or
- * largest item is smaller than search template */
- if (trav->curr_node->link[dir] == NULL)
- return trav->curr_node->data;
- trav->up[trav->top++] = trav->curr_node;
- trav->curr_node = trav->curr_node->link[dir];
- }
- }
- return NULL; /* should not happen */
- }
- /* two functions needed to fully traverse the tree: initialize and continue
- * useful to get all items in the tree non-recursively
- * this one here uses a stack
- * parent pointers or threads would also be possible
- * but these would need to be added to RB_NODE
- * -> more memory needed for standard operations
- */
- /* start traversing the tree
- * returns pointer to smallest data item
- */
- static void *rbtree_first(struct RB_TRAV *trav)
- {
- /* get smallest item */
- while (trav->curr_node->link[0] != NULL) {
- trav->up[trav->top++] = trav->curr_node;
- trav->curr_node = trav->curr_node->link[0];
- }
- return trav->curr_node->data; /* return smallest item */
- }
- /* start traversing the tree
- * returns pointer to largest data item
- */
- static void *rbtree_last(struct RB_TRAV *trav)
- {
- /* get smallest item */
- while (trav->curr_node->link[1] != NULL) {
- trav->up[trav->top++] = trav->curr_node;
- trav->curr_node = trav->curr_node->link[1];
- }
- return trav->curr_node->data; /* return smallest item */
- }
- /* continue traversing the tree in ascending order
- * returns pointer to data item, NULL when finished
- */
- void *rbtree_next(struct RB_TRAV *trav)
- {
- if (trav->curr_node->link[1] != NULL) {
- /* something on the right side: larger item */
- trav->up[trav->top++] = trav->curr_node;
- trav->curr_node = trav->curr_node->link[1];
- /* go down, find smallest item in this branch */
- while (trav->curr_node->link[0] != NULL) {
- trav->up[trav->top++] = trav->curr_node;
- trav->curr_node = trav->curr_node->link[0];
- }
- }
- else {
- /* at smallest item in this branch, go back up */
- struct RB_NODE *last;
- do {
- if (trav->top == 0) {
- trav->curr_node = NULL;
- break;
- }
- last = trav->curr_node;
- trav->curr_node = trav->up[--trav->top];
- } while (last == trav->curr_node->link[1]);
- }
- if (trav->curr_node != NULL) {
- return trav->curr_node->data;
- }
- else
- return NULL; /* finished traversing */
- }
- /* continue traversing the tree in descending order
- * returns pointer to data item, NULL when finished
- */
- void *rbtree_previous(struct RB_TRAV *trav)
- {
- if (trav->curr_node->link[0] != NULL) {
- /* something on the left side: smaller item */
- trav->up[trav->top++] = trav->curr_node;
- trav->curr_node = trav->curr_node->link[0];
- /* go down, find largest item in this branch */
- while (trav->curr_node->link[1] != NULL) {
- trav->up[trav->top++] = trav->curr_node;
- trav->curr_node = trav->curr_node->link[1];
- }
- }
- else {
- /* at largest item in this branch, go back up */
- struct RB_NODE *last;
- do {
- if (trav->top == 0) {
- trav->curr_node = NULL;
- break;
- }
- last = trav->curr_node;
- trav->curr_node = trav->up[--trav->top];
- } while (last == trav->curr_node->link[0]);
- }
- if (trav->curr_node != NULL) {
- return trav->curr_node->data;
- }
- else
- return NULL; /* finished traversing */
- }
- /* clear the tree, removing all entries */
- void rbtree_clear(struct RB_TREE *tree)
- {
- struct RB_NODE *it;
- struct RB_NODE *save = tree->root;
- /*
- Rotate away the left links so that
- we can treat this like the destruction
- of a linked list
- */
- while((it = save) != NULL) {
- if (it->link[0] == NULL) {
- /* No left links, just kill the node and move on */
- save = it->link[1];
- free(it->data);
- it->data = NULL;
- free(it);
- it = NULL;
- }
- else {
- /* Rotate away the left link and check again */
- save = it->link[0];
- it->link[0] = save->link[1];
- save->link[1] = it;
- }
- }
- tree->root = NULL;
- }
- /* destroy the tree */
- void rbtree_destroy(struct RB_TREE *tree)
- {
- /* remove all entries */
- rbtree_clear(tree);
- free(tree);
- tree = NULL;
- }
- /* used for debugging: check for errors in tree structure */
- int rbtree_debug(struct RB_TREE *tree, struct RB_NODE *root)
- {
- int lh, rh;
- if (root == NULL)
- return 1;
- else {
- struct RB_NODE *ln = root->link[0];
- struct RB_NODE *rn = root->link[1];
- int lcmp = 0, rcmp = 0;
- /* Consecutive red links */
- if (is_red(root)) {
- if (is_red(ln) || is_red(rn)) {
- G_warning("Red Black Tree debugging: Red violation");
- return 0;
- }
- }
- lh = rbtree_debug(tree, ln);
- rh = rbtree_debug(tree, rn);
- if (ln) {
- lcmp = tree->rb_compare(ln->data, root->data);
- }
- if (rn) {
- rcmp = tree->rb_compare(rn->data, root->data);
- }
- /* Invalid binary search tree:
- * left node >= parent or right node <= parent */
- if ((ln != NULL && lcmp > -1)
- || (rn != NULL && rcmp < 1)) {
- G_warning("Red Black Tree debugging: Binary tree violation");
- return 0;
- }
- /* Black height mismatch */
- if (lh != 0 && rh != 0 && lh != rh) {
- G_warning("Red Black Tree debugging: Black violation");
- return 0;
- }
- /* Only count black links */
- if (lh != 0 && rh != 0)
- return is_red(root) ? lh : lh + 1;
- else
- return 0;
- }
- }
- /*******************************************************
- * *
- * internal functions for Red Black Tree maintenance *
- * *
- *******************************************************/
- /* add a new node to the tree */
- static struct RB_NODE *rbtree_make_node(size_t datasize, void *data)
- {
- struct RB_NODE *new_node = (struct RB_NODE *)malloc(sizeof(*new_node));
- if (new_node == NULL)
- G_fatal_error("RB Search Tree: Out of memory!");
- new_node->data = malloc(datasize);
- if (new_node->data == NULL)
- G_fatal_error("RB Search Tree: Out of memory!");
- memcpy(new_node->data, data, datasize);
- new_node->red = 1; /* 1 is red, 0 is black */
- new_node->link[0] = NULL;
- new_node->link[1] = NULL;
- return new_node;
- }
- /* check for red violation */
- static int is_red(struct RB_NODE *root)
- {
- if (root)
- return root->red == 1;
- return 0;
- }
- /* single rotation */
- static struct RB_NODE *rbtree_single(struct RB_NODE *root, int dir)
- {
- struct RB_NODE *newroot = root->link[!dir];
- root->link[!dir] = newroot->link[dir];
- newroot->link[dir] = root;
- root->red = 1;
- newroot->red = 0;
- return newroot;
- }
- /* double rotation */
- static struct RB_NODE *rbtree_double(struct RB_NODE *root, int dir)
- {
- root->link[!dir] = rbtree_single(root->link[!dir], !dir);
- return rbtree_single(root, dir);
- }
|