123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562 |
- #!/usr/bin/env python3
- #
- ############################################################################
- #
- # MODULE: d.polar
- # AUTHOR(S): Markus Neteler. neteler itc.it
- # algorithm + EPS output by Bruno Caprile
- # d.graph plotting code by Hamish Bowman
- # Converted to Python by Glynn Clements
- # PURPOSE: Draws polar diagram of angle map. The outer circle considers
- # all cells in the map. If one or many of them are NULL (no data),
- # the figure will not reach the outer circle. The vector inside
- # indicates the prevalent direction.
- # COPYRIGHT: (C) 2006,2008 by the GRASS Development Team
- #
- # This program is free software under the GNU General Public
- # License (>=v2). Read the file COPYING that comes with GRASS
- # for details.
- #
- #############################################################################
- # %Module
- # % description: Draws polar diagram of angle map such as aspect or flow directions
- # % keyword: display
- # % keyword: diagram
- # %End
- # %option G_OPT_R_MAP
- # % description: Name of raster angle map
- # %End
- # %option
- # % key: undef
- # % type: double
- # % description: Pixel value to be interpreted as undefined (different from NULL)
- # % required : no
- # %End
- # %option G_OPT_F_OUTPUT
- # % description: Name for optional EPS output file
- # % required : no
- # %end
- # %flag
- # % key: x
- # % description: Plot using Xgraph
- # %end
- import os
- import string
- import math
- import atexit
- import glob
- import shutil
- from grass.script.utils import try_remove, basename
- from grass.script import core as gcore
- def raster_map_required(name):
- if not gcore.find_file(name, "cell")["file"]:
- gcore.fatal(_("Raster map <%s> not found") % name)
- def cleanup():
- try_remove(tmp)
- for f in glob.glob(tmp + "_*"):
- try_remove(f)
- def plot_xgraph():
- newline = ["\n"]
- p = gcore.Popen(["xgraph"], stdin=gcore.PIPE)
- for point in sine_cosine_replic + newline + outercircle + newline + vector:
- if isinstance(point, tuple):
- p.stdin.write(gcore.encode("%f %f\n" % point))
- else:
- p.stdin.write(gcore.encode(point + "\n"))
- p.stdin.close()
- p.wait()
- def plot_dgraph():
- # use d.info and d.frame to create a square frame in the center of the
- # window.
- s = gcore.read_command("d.info", flags="d")
- f = s.split()
- frame_width = float(f[2])
- frame_height = float(f[3])
- # take shorter side as length of frame side
- min_side = min(frame_width, frame_height)
- dx = (frame_width - min_side) / 2
- dy = (frame_height - min_side) / 2
- fl = dx
- fr = frame_width - dx
- ft = dy
- fb = frame_height - dy
- tenv = os.environ.copy()
- tenv["GRASS_RENDER_FRAME"] = "%f,%f,%f,%f" % (ft, fb, fl, fr)
- # polyline calculations
- ring = 0.95
- scaleval = ring * totalvalidnumber / totalnumber
- sine_cosine_replic_normalized = [
- ((scaleval * p[0] / maxradius + 1) * 50, (scaleval * p[1] / maxradius + 1) * 50)
- for p in sine_cosine_replic
- if isinstance(p, tuple)
- ]
- # create circle
- circle = [
- (
- 50 * (1 + ring * math.sin(math.radians(i))),
- 50 * (1 + ring * math.cos(math.radians(i))),
- )
- for i in range(0, 361)
- ]
- # trend vector
- vect = [
- ((scaleval * p[0] / maxradius + 1) * 50, (scaleval * p[1] / maxradius + 1) * 50)
- for p in vector[1:]
- ]
- # Possible TODOs:
- # To fill data area with color, use BOTH d.graph's polyline and polygon commands.
- # Using polygon alone gives a jagged boundary due to sampling technique
- # (not a bug).
- # plot it!
- lines = (
- [
- # draw circle
- # mandatory when drawing proportional to non-square frame
- "color 180:255:180",
- "polyline",
- ]
- + circle
- + [
- # draw axes
- "color 180:180:180",
- "width 0",
- "move 0 50",
- "draw 100 50",
- "move 50 0",
- "draw 50 100",
- # draw the goods
- "color red",
- "width 0",
- "polyline",
- ]
- + sine_cosine_replic_normalized
- + [
- # draw vector
- "color blue",
- "width 3",
- "polyline",
- ]
- + vect
- + [
- # draw compass text
- "color black",
- "width 2",
- "size 10 10",
- "move 51 97",
- "text N",
- "move 51 1",
- "text S",
- "move 1 51",
- "text W",
- "move 97 51",
- "text E",
- # draw legend text
- "width 0",
- "size 10",
- "color 0:180:0",
- "move 0.5 96.5",
- "text All data (incl. NULLs)",
- "color red",
- "move 0.5 93.5",
- "text Real data angles",
- "color blue",
- "move 0.5 90.5",
- "text Avg. direction",
- ]
- )
- p = gcore.feed_command("d.graph", env=tenv)
- for point in lines:
- if isinstance(point, tuple):
- p.stdin.write(gcore.encode("%f %f\n" % point))
- else:
- p.stdin.write(gcore.encode(point + "\n"))
- p.stdin.close()
- p.wait()
- def plot_eps(psout):
- # EPS output (by M.Neteler and Bruno Caprile, ITC-irst)
- gcore.message(_("Generating %s ...") % psout)
- outerradius = maxradius
- epsscale = 0.1
- frameallowance = 1.1
- halfframe = 3000
- center = (halfframe, halfframe)
- scale = halfframe / (outerradius * frameallowance)
- diagramlinewidth = halfframe / 400
- axeslinewidth = halfframe / 500
- axesfontsize = halfframe / 16
- diagramfontsize = halfframe / 20
- halfframe_2 = halfframe * 2
- averagedirectioncolor = 1 # (blue)
- diagramcolor = 4 # (red)
- circlecolor = 2 # (green)
- axescolor = 0 # (black)
- northjustification = 2
- eastjustification = 6
- southjustification = 8
- westjustification = 8
- northxshift = 1.02 * halfframe
- northyshift = 1.98 * halfframe
- eastxshift = 1.98 * halfframe
- eastyshift = 1.02 * halfframe
- southxshift = 1.02 * halfframe
- southyshift = 0.02 * halfframe
- westxshift = 0.01 * halfframe
- westyshift = 1.02 * halfframe
- alldatastring = "all data (null included)"
- realdatastring = "real data angles"
- averagedirectionstring = "avg. direction"
- legendsx = 1.95 * halfframe
- alldatalegendy = 1.95 * halfframe
- realdatalegendy = 1.90 * halfframe
- averagedirectionlegendy = 1.85 * halfframe
- ##########
- outf = open(psout, "w")
- prolog = os.path.join(os.environ["GISBASE"], "etc", "d.polar", "ps_defs.eps")
- inf = open(prolog)
- shutil.copyfileobj(inf, outf)
- inf.close()
- t = string.Template(
- """
- $EPSSCALE $EPSSCALE scale %% EPS-SCALE EPS-SCALE scale
- %%
- %% drawing axes
- %%
- col0 %% colAXES-COLOR
- $AXESLINEWIDTH setlinewidth %% AXES-LINEWIDTH setlinewidth
- [] 0 setdash
- newpath
- $HALFFRAME 0.0 moveto %% HALF-FRAME 0.0 moveto
- $HALFFRAME $HALFFRAME_2 lineto %% HALF-FRAME (2 * HALF-FRAME) lineto
- 0.0 $HALFFRAME moveto %% 0.0 HALF-FRAME moveto
- $HALFFRAME_2 $HALFFRAME lineto %% (2 * HALF-FRAME) HALF-FRAME lineto
- stroke
- %%
- %% drawing outer circle
- %%
- col2 %% colCIRCLE-COLOR
- $DIAGRAMFONTSIZE /Times-Roman choose-font %% DIAGRAM-FONTSIZE /Times-Roman choose-font
- $DIAGRAMLINEWIDTH setlinewidth %% DIAGRAM-LINEWIDTH setlinewidth
- [] 0 setdash
- newpath
- %% coordinates of rescaled, translated outer circle follow
- %% first point moveto, then lineto
- """
- )
- s = t.substitute(
- AXESLINEWIDTH=axeslinewidth,
- DIAGRAMFONTSIZE=diagramfontsize,
- DIAGRAMLINEWIDTH=diagramlinewidth,
- EPSSCALE=epsscale,
- HALFFRAME=halfframe,
- HALFFRAME_2=halfframe_2,
- )
- outf.write(s)
- sublength = len(outercircle) - 2
- (x, y) = outercircle[1]
- outf.write("%.2f %.2f moveto\n" % (x * scale + halfframe, y * scale + halfframe))
- for x, y in outercircle[2:]:
- outf.write(
- "%.2f %.2f lineto\n" % (x * scale + halfframe, y * scale + halfframe)
- )
- t = string.Template(
- """
- stroke
- %%
- %% axis titles
- %%
- col0 %% colAXES-COLOR
- $AXESFONTSIZE /Times-Roman choose-font %% AXES-FONTSIZE /Times-Roman choose-font
- (N) $NORTHXSHIFT $NORTHYSHIFT $NORTHJUSTIFICATION just-string %% NORTH-X-SHIFT NORTH-Y-SHIFT NORTH-JUSTIFICATION just-string
- (E) $EASTXSHIFT $EASTYSHIFT $EASTJUSTIFICATION just-string %% EAST-X-SHIFT EAST-Y-SHIFT EAST-JUSTIFICATION just-string
- (S) $SOUTHXSHIFT $SOUTHYSHIFT $SOUTHJUSTIFICATION just-string %% SOUTH-X-SHIFT SOUTH-Y-SHIFT SOUTH-JUSTIFICATION just-string
- (W) $WESTXSHIFT $WESTYSHIFT $WESTJUSTIFICATION just-string %% WEST-X-SHIFT WEST-Y-SHIFT WEST-JUSTIFICATION just-string
- $DIAGRAMFONTSIZE /Times-Roman choose-font %% DIAGRAM-FONTSIZE /Times-Roman choose-font
- %%
- %% drawing real data diagram
- %%
- col4 %% colDIAGRAM-COLOR
- $DIAGRAMLINEWIDTH setlinewidth %% DIAGRAM-LINEWIDTH setlinewidth
- [] 0 setdash
- newpath
- %% coordinates of rescaled, translated diagram follow
- %% first point moveto, then lineto
- """
- )
- s = t.substitute(
- AXESFONTSIZE=axesfontsize,
- DIAGRAMFONTSIZE=diagramfontsize,
- DIAGRAMLINEWIDTH=diagramlinewidth,
- EASTJUSTIFICATION=eastjustification,
- EASTXSHIFT=eastxshift,
- EASTYSHIFT=eastyshift,
- NORTHJUSTIFICATION=northjustification,
- NORTHXSHIFT=northxshift,
- NORTHYSHIFT=northyshift,
- SOUTHJUSTIFICATION=southjustification,
- SOUTHXSHIFT=southxshift,
- SOUTHYSHIFT=southyshift,
- WESTJUSTIFICATION=westjustification,
- WESTXSHIFT=westxshift,
- WESTYSHIFT=westyshift,
- )
- outf.write(s)
- sublength = len(sine_cosine_replic) - 2
- (x, y) = sine_cosine_replic[1]
- outf.write("%.2f %.2f moveto\n" % (x * scale + halfframe, y * scale + halfframe))
- for x, y in sine_cosine_replic[2:]:
- outf.write(
- "%.2f %.2f lineto\n" % (x * scale + halfframe, y * scale + halfframe)
- )
- t = string.Template(
- """
- stroke
- %%
- %% drawing average direction
- %%
- col1 %% colAVERAGE-DIRECTION-COLOR
- $DIAGRAMLINEWIDTH setlinewidth %% DIAGRAM-LINEWIDTH setlinewidth
- [] 0 setdash
- newpath
- %% coordinates of rescaled, translated average direction follow
- %% first point moveto, second lineto
- """
- )
- s = t.substitute(DIAGRAMLINEWIDTH=diagramlinewidth)
- outf.write(s)
- sublength = len(vector) - 2
- (x, y) = vector[1]
- outf.write("%.2f %.2f moveto\n" % (x * scale + halfframe, y * scale + halfframe))
- for x, y in vector[2:]:
- outf.write(
- "%.2f %.2f lineto\n" % (x * scale + halfframe, y * scale + halfframe)
- )
- t = string.Template(
- """
- stroke
- %%
- %% drawing legends
- %%
- col2 %% colCIRCLE-COLOR
- %% Line below: (ALL-DATA-STRING) LEGENDS-X ALL-DATA-LEGEND-Y 4 just-string
- ($ALLDATASTRING) $LEGENDSX $ALLDATALEGENDY 4 just-string
- col4 %% colDIAGRAM-COLOR
- %% Line below: (REAL-DATA-STRING) LEGENDS-X REAL-DATA-LEGEND-Y 4 just-string
- ($REALDATASTRING) $LEGENDSX $REALDATALEGENDY 4 just-string
- col1 %% colAVERAGE-DIRECTION-COLOR
- %% Line below: (AVERAGE-DIRECTION-STRING) LEGENDS-X AVERAGE-DIRECTION-LEGEND-Y 4 just-string
- ($AVERAGEDIRECTIONSTRING) $LEGENDSX $AVERAGEDIRECTIONLEGENDY 4 just-string
- """
- )
- s = t.substitute(
- ALLDATALEGENDY=alldatalegendy,
- ALLDATASTRING=alldatastring,
- AVERAGEDIRECTIONLEGENDY=averagedirectionlegendy,
- AVERAGEDIRECTIONSTRING=averagedirectionstring,
- LEGENDSX=legendsx,
- REALDATALEGENDY=realdatalegendy,
- REALDATASTRING=realdatastring,
- )
- outf.write(s)
- outf.close()
- gcore.message(_("Done."))
- def main():
- global tmp
- global sine_cosine_replic, outercircle, vector
- global totalvalidnumber, totalnumber, maxradius
- map = options["map"]
- undef = options["undef"]
- eps = options["output"]
- xgraph = flags["x"]
- tmp = gcore.tempfile()
- if eps and xgraph:
- gcore.fatal(_("Please select only one output method"))
- if eps:
- if os.sep in eps and not os.path.exists(os.path.dirname(eps)):
- gcore.fatal(
- _(
- "EPS output file path <{}>, doesn't exists. "
- "Set new output file path.".format(eps)
- )
- )
- else:
- eps = basename(eps, "eps") + ".eps"
- if not eps.endswith(".eps"):
- eps += ".eps"
- if os.path.exists(eps) and not os.getenv("GRASS_OVERWRITE"):
- gcore.fatal(
- _(
- "option <output>: <{}> exists. To overwrite, "
- "use the --overwrite flag.".format(eps)
- )
- )
- # check if we have xgraph (if no EPS output requested)
- if xgraph and not gcore.find_program("xgraph"):
- gcore.fatal(_("xgraph required, please install first (www.xgraph.org)"))
- raster_map_required(map)
- #################################
- # this file contains everything:
- rawfile = tmp + "_raw"
- rawf = open(rawfile, "w")
- gcore.run_command("r.stats", flags="1", input=map, stdout=rawf)
- rawf.close()
- rawf = open(rawfile)
- totalnumber = 0
- for line in rawf:
- totalnumber += 1
- rawf.close()
- gcore.message(_("Calculating statistics for polar diagram... (be patient)"))
- # wipe out NULL data and undef data if defined by user
- # - generate degree binned to integer, eliminate NO DATA (NULL):
- # change 360 to 0 to close polar diagram:
- rawf = open(rawfile)
- nvals = 0
- sumcos = 0
- sumsin = 0
- freq = {}
- for line in rawf:
- line = line.rstrip("\r\n")
- if line in ["*", undef]:
- continue
- nvals += 1
- x = float(line)
- rx = math.radians(x)
- sumcos += math.cos(rx)
- sumsin += math.sin(rx)
- ix = round(x)
- if ix == 360:
- ix = 0
- if ix in freq:
- freq[ix] += 1
- else:
- freq[ix] = 1
- rawf.close()
- totalvalidnumber = nvals
- if totalvalidnumber == 0:
- gcore.fatal(_("No data pixel found"))
- #################################
- # unit vector on raw data converted to radians without no data:
- unitvector = (sumcos / nvals, sumsin / nvals)
- #################################
- # how many are there?:
- occurrences = sorted([(math.radians(x), freq[x]) for x in freq])
- # find the maximum value
- maxradius = max([f for a, f in occurrences])
- # now do cos() sin()
- sine_cosine = [(math.cos(a) * f, math.sin(a) * f) for a, f in occurrences]
- sine_cosine_replic = ['"Real data angles'] + sine_cosine + sine_cosine[0:1]
- if eps or xgraph:
- outercircle = []
- outercircle.append('"All Data incl. NULLs')
- scale = 1.0 * totalnumber / totalvalidnumber * maxradius
- for i in range(0, 361):
- a = math.radians(i)
- x = math.cos(a) * scale
- y = math.sin(a) * scale
- outercircle.append((x, y))
- # fix vector length to become visible (x? of $MAXRADIUS):
- vector = []
- vector.append('"Avg. Direction\n')
- vector.append((0, 0))
- vector.append((unitvector[0] * maxradius, unitvector[1] * maxradius))
- ###########################################################
- # Now output:
- if eps:
- plot_eps(psout=eps)
- elif xgraph:
- plot_xgraph()
- else:
- plot_dgraph()
- gcore.message(_("Average vector:"))
- gcore.message(
- _("direction: %.1f degrees CCW from East")
- % math.degrees(math.atan2(unitvector[1], unitvector[0]))
- )
- gcore.message(
- _("magnitude: %.1f percent of fullscale")
- % (100 * math.hypot(unitvector[0], unitvector[1]))
- )
- if __name__ == "__main__":
- options, flags = gcore.parser()
- atexit.register(cleanup)
- main()
|