# Copyright The PyTorch Lightning team.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Simple MNIST image classifier example with LightningModule.
To run: python image_classifier_4_lightning_module.py --trainer.max_epochs=50
"""
import torch
import torchvision.transforms as T
from torch.nn import functional as F
from torchmetrics import Accuracy

from pl_examples import cli_lightning_logo
from pl_examples.mnist_datamodule import MNIST
from pl_examples.image_classifier_1_pytorch import Net
from pytorch_lightning import LightningModule
from pytorch_lightning.utilities.cli import LightningCLI


class ImageClassifier(LightningModule):
    def __init__(self, model=None, lr=1.0, gamma=0.7, batch_size=32):
        super().__init__()
        self.save_hyperparameters(ignore="model")
        self.model = model or Net()
        self.test_acc = Accuracy()

    def forward(self, x):
        return self.model(x)

    def training_step(self, batch, batch_idx):
        x, y = batch
        logits = self.forward(x)
        loss = F.nll_loss(logits, y.long())
        return loss

    def test_step(self, batch, batch_idx):
        x, y = batch
        logits = self.forward(x)
        loss = F.nll_loss(logits, y.long())
        self.test_acc(logits, y)
        self.log("test_acc", self.test_acc)
        self.log("test_loss", loss)

    def configure_optimizers(self):
        optimizer = torch.optim.Adadelta(self.model.parameters(), lr=self.hparams.lr)
        return [optimizer], [torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=self.hparams.gamma)]

    # Methods for the `LightningDataModule` conversion

    @property
    def transform(self):
        return T.Compose([T.ToTensor(), T.Normalize((0.1307,), (0.3081,))])

    def prepare_data(self) -> None:
        MNIST("./data", download=True)

    def train_dataloader(self):
        train_dataset = MNIST("./data", train=True, download=False, transform=self.transform)
        return torch.utils.data.DataLoader(train_dataset, batch_size=self.hparams.batch_size)

    def test_dataloader(self):
        test_dataset = MNIST("./data", train=False, download=False, transform=self.transform)
        return torch.utils.data.DataLoader(test_dataset, batch_size=self.hparams.batch_size)


def cli_main():
    # The LightningCLI removes all the boilerplate associated with arguments parsing. This is purely optional.
    cli = LightningCLI(ImageClassifier, seed_everything_default=42, save_config_overwrite=True, run=False)
    cli.trainer.fit(cli.model, datamodule=cli.datamodule)
    cli.trainer.test(ckpt_path="best", datamodule=cli.datamodule)


if __name__ == "__main__":
    cli_lightning_logo()
    cli_main()