123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155 |
- # Copyright The PyTorch Lightning team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- import argparse
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- import torch.optim as optim
- import torchvision.transforms as T
- from torch.optim.lr_scheduler import StepLR
- from pl_examples.mnist_datamodule import MNIST
- # Credit to the PyTorch Team
- # Taken from https://github.com/pytorch/examples/blob/master/mnist/main.py and slightly adapted.
- class Net(nn.Module):
- def __init__(self):
- super().__init__()
- self.conv1 = nn.Conv2d(1, 32, 3, 1)
- self.conv2 = nn.Conv2d(32, 64, 3, 1)
- self.dropout1 = nn.Dropout(0.25)
- self.dropout2 = nn.Dropout(0.5)
- self.fc1 = nn.Linear(9216, 128)
- self.fc2 = nn.Linear(128, 10)
- def forward(self, x):
- x = self.conv1(x)
- x = F.relu(x)
- x = self.conv2(x)
- x = F.relu(x)
- x = F.max_pool2d(x, 2)
- x = self.dropout1(x)
- x = torch.flatten(x, 1)
- x = self.fc1(x)
- x = F.relu(x)
- x = self.dropout2(x)
- x = self.fc2(x)
- output = F.log_softmax(x, dim=1)
- return output
- def run(hparams):
- torch.manual_seed(hparams.seed)
- use_cuda = torch.cuda.is_available()
- device = torch.device("cuda" if use_cuda else "cpu")
- transform = T.Compose([T.ToTensor(), T.Normalize((0.1307,), (0.3081,))])
- train_dataset = MNIST("./data", train=True, download=True, transform=transform)
- test_dataset = MNIST("./data", train=False, transform=transform)
- train_loader = torch.utils.data.DataLoader(
- train_dataset,
- batch_size=hparams.batch_size,
- )
- test_loader = torch.utils.data.DataLoader(test_dataset, batch_size=hparams.batch_size)
- model = Net().to(device)
- optimizer = optim.Adadelta(model.parameters(), lr=hparams.lr)
- scheduler = StepLR(optimizer, step_size=1, gamma=hparams.gamma)
- # EPOCH LOOP
- for epoch in range(1, hparams.epochs + 1):
- # TRAINING LOOP
- model.train()
- for batch_idx, (data, target) in enumerate(train_loader):
- data, target = data.to(device), target.to(device)
- optimizer.zero_grad()
- output = model(data)
- loss = F.nll_loss(output, target)
- loss.backward()
- optimizer.step()
- if (batch_idx == 0) or ((batch_idx + 1) % hparams.log_interval == 0):
- print(
- "Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}".format(
- epoch,
- batch_idx * len(data),
- len(train_loader.dataset),
- 100.0 * batch_idx / len(train_loader),
- loss.item(),
- )
- )
- if hparams.dry_run:
- break
- scheduler.step()
- # TESTING LOOP
- model.eval()
- test_loss = 0
- correct = 0
- with torch.no_grad():
- for data, target in test_loader:
- data, target = data.to(device), target.to(device)
- output = model(data)
- test_loss += F.nll_loss(output, target, reduction="sum").item() # sum up batch loss
- pred = output.argmax(dim=1, keepdim=True) # get the index of the max log-probability
- correct += pred.eq(target.view_as(pred)).sum().item()
- if hparams.dry_run:
- break
- test_loss /= len(test_loader.dataset)
- print(
- "\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n".format(
- test_loss, correct, len(test_loader.dataset), 100.0 * correct / len(test_loader.dataset)
- )
- )
- if hparams.dry_run:
- break
- if hparams.save_model:
- torch.save(model.state_dict(), "mnist_cnn.pt")
- def main():
- parser = argparse.ArgumentParser(description="PyTorch MNIST Example")
- parser.add_argument(
- "--batch-size", type=int, default=64, metavar="N", help="input batch size for training (default: 64)"
- )
- parser.add_argument("--epochs", type=int, default=14, metavar="N", help="number of epochs to train (default: 14)")
- parser.add_argument("--lr", type=float, default=1.0, metavar="LR", help="learning rate (default: 1.0)")
- parser.add_argument("--gamma", type=float, default=0.7, metavar="M", help="Learning rate step gamma (default: 0.7)")
- parser.add_argument("--dry-run", action="store_true", default=False, help="quickly check a single pass")
- parser.add_argument("--seed", type=int, default=1, metavar="S", help="random seed (default: 1)")
- parser.add_argument(
- "--log-interval",
- type=int,
- default=10,
- metavar="N",
- help="how many batches to wait before logging training status",
- )
- parser.add_argument("--save-model", action="store_true", default=False, help="For Saving the current Model")
- hparams = parser.parse_args()
- run(hparams)
- if __name__ == "__main__":
- main()
|