12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485 |
- # Copyright The PyTorch Lightning team.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Simple MNIST image classifier example with LightningModule.
- To run: python image_classifier_4_lightning_module.py --trainer.max_epochs=50
- """
- import torch
- import torchvision.transforms as T
- from torch.nn import functional as F
- from torchmetrics import Accuracy
- from pl_examples import cli_lightning_logo
- from pl_examples.mnist_datamodule import MNIST
- from pl_examples.image_classifier_1_pytorch import Net
- from pytorch_lightning import LightningModule
- from pytorch_lightning.utilities.cli import LightningCLI
- class ImageClassifier(LightningModule):
- def __init__(self, model=None, lr=1.0, gamma=0.7, batch_size=32):
- super().__init__()
- self.save_hyperparameters(ignore="model")
- self.model = model or Net()
- self.test_acc = Accuracy()
- def forward(self, x):
- return self.model(x)
- def training_step(self, batch, batch_idx):
- x, y = batch
- logits = self.forward(x)
- loss = F.nll_loss(logits, y.long())
- return loss
- def test_step(self, batch, batch_idx):
- x, y = batch
- logits = self.forward(x)
- loss = F.nll_loss(logits, y.long())
- self.test_acc(logits, y)
- self.log("test_acc", self.test_acc)
- self.log("test_loss", loss)
- def configure_optimizers(self):
- optimizer = torch.optim.Adadelta(self.model.parameters(), lr=self.hparams.lr)
- return [optimizer], [torch.optim.lr_scheduler.StepLR(optimizer, step_size=1, gamma=self.hparams.gamma)]
- # Methods for the `LightningDataModule` conversion
- @property
- def transform(self):
- return T.Compose([T.ToTensor(), T.Normalize((0.1307,), (0.3081,))])
- def prepare_data(self) -> None:
- MNIST("./data", download=True)
- def train_dataloader(self):
- train_dataset = MNIST("./data", train=True, download=False, transform=self.transform)
- return torch.utils.data.DataLoader(train_dataset, batch_size=self.hparams.batch_size)
- def test_dataloader(self):
- test_dataset = MNIST("./data", train=False, download=False, transform=self.transform)
- return torch.utils.data.DataLoader(test_dataset, batch_size=self.hparams.batch_size)
- def cli_main():
- # The LightningCLI removes all the boilerplate associated with arguments parsing. This is purely optional.
- cli = LightningCLI(ImageClassifier, seed_everything_default=42, save_config_overwrite=True, run=False)
- cli.trainer.fit(cli.model, datamodule=cli.datamodule)
- cli.trainer.test(ckpt_path="best", datamodule=cli.datamodule)
- if __name__ == "__main__":
- cli_lightning_logo()
- cli_main()
|