{ "cells": [ { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [], "source": [ "import sys\n", "import time\n", "import pandas as pd\n", "import numpy as np\n", "\n", "# QCGPU Imports\n", "import qcgpu\n", "\n", "# ProjectQ Imports\n", "from projectq import MainEngine\n", "import projectq.ops as ops\n", "from projectq.backends import Simulator\n", "from projectq.types import Qureg\n", "\n" ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [], "source": [ "def bench_qcgpu(n, depth):\n", " state = qcgpu.State(n)\n", "\n", " h = qcgpu.gate.h()\n", " x = qcgpu.gate.x()\n", " sqrt_x = qcgpu.gate.sqrt_x()\n", "\n", " print('started')\n", " start = time.time()\n", "\n", " for level in range(depth):\n", " for q in range(n):\n", " \n", " state.apply_gate(h, q)\n", " state.apply_gate(sqrt_x, q)\n", "\n", " if q != 0:\n", " state.apply_controlled_gate(x, q, 0)\n", " \n", " runtime = time.time() - start\n", " print('ended: ', runtime)\n", " return runtime\n", " \n", "def bench_projectq(n, depth):\n", " eng = MainEngine(backend=Simulator(gate_fusion=True), engine_list=[])\n", " qbits = eng.allocate_qureg(n)\n", "\n", " print('started')\n", " start = time.time()\n", "\n", " for level in range(depth):\n", " for q in qbits:\n", " ops.H | q\n", " ops.SqrtX | q\n", " if q != qbits[0]:\n", " ops.CNOT | (q, qbits[0])\n", "\n", " runtime = time.time() - start\n", " print('ended: ', runtime)\n", "\n", " for q in qbits:\n", " ops.Measure | q\n", " eng.flush()\n", " return runtime\n" ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "started\n", "('ended: ', 0.2940499782562256)\n" ] }, { "data": { "text/plain": [ "0.2940499782562256" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bench_qcgpu(26,5)" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "started\n", "('ended: ', 12.032409906387329)\n" ] }, { "data": { "text/plain": [ "12.032409906387329" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "bench_projectq(26,5)" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [], "source": [ "raw_data = {\n", " 'num_qubits': [2,2,2,3,3,3,4,4,4,5,5,5,6,6,6], \n", " 'depth': [10,20,30,10,20,30,10,20,30,10,20,30,10,20,30], \n", " 'time': [0.2940499782562256, 0.2940499782562256, 0.2940499782562256, 0.2940499782562256, 0.2940499782562256, 0.2940499782562256, 0.2940499782562256, 0.2940499782562256, 0.2940499782562256, 0.2940499782562256, 0.2940499782562256, 0.2940499782562256, 0.2940499782562256, 0.2940499782562256, 0.2940499782562256]\n", "}\n", "\n", "df = pd.DataFrame(raw_data, columns = ['num_qubits', 'depth', 'time'])\n", "\n", "df\n", "\n", "df.to_csv('out.csv')" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 2", "language": "python", "name": "python2" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 2 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython2", "version": "2.7.15rc1" } }, "nbformat": 4, "nbformat_minor": 2 }