1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
use integer::Integer;
use traits::Zero;
use biguint::BigUint;
struct MontyReducer<'a> {
n: &'a BigUint,
n0inv: u32
}
fn inv_mod_u32(num: u32) -> u32 {
assert!(num % 2 != 0);
let mut a: i64 = num as i64;
let mut b: i64 = (u32::max_value() as i64) + 1;
let mut u = 1;
let mut w = 0;
while b != 0 {
let q = a / b;
let r = a % b;
a = b; b = r;
let m = u - w*q;
u = w; w = m;
}
assert!(a == 1);
u as u32
}
impl<'a> MontyReducer<'a> {
fn new(n: &'a BigUint) -> Self {
let n0inv = inv_mod_u32(n.data[0]);
MontyReducer { n: n, n0inv: n0inv }
}
}
fn monty_redc(a: BigUint, mr: &MontyReducer) -> BigUint {
let mut c = a.data;
let n = &mr.n.data;
let n_size = n.len();
c.resize(2 * n_size + 2, 0);
let mu = 0u32.wrapping_sub(mr.n0inv);
for i in 0..n_size {
let q_i = c[i].wrapping_mul(mu);
super::algorithms::mac_digit(&mut c[i..], n, q_i);
}
let ret = BigUint::new(c[n_size..].to_vec());
if &ret < mr.n {
ret
} else {
ret - mr.n
}
}
fn monty_mult(a: BigUint, b: &BigUint, mr: &MontyReducer) -> BigUint {
monty_redc(a * b, mr)
}
fn monty_sqr(a: BigUint, mr: &MontyReducer) -> BigUint {
monty_redc(&a * &a, mr)
}
pub fn monty_modpow(a: &BigUint, exp: &BigUint, modulus: &BigUint) -> BigUint{
let mr = MontyReducer::new(modulus);
let mut v = vec![0; modulus.data.len()];
v.push(1);
let r = BigUint::new(v);
let mut apri = a * &r % modulus;
let mut ans = &r % modulus;
let mut e = exp.clone();
while !e.is_zero() {
if e.is_odd() {
ans = monty_mult(ans, &apri, &mr);
}
apri = monty_sqr(apri, &mr);
e = e >> 1;
}
monty_redc(ans, &mr)
}