1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
use gate::Gate;
use traits::Backend;
use failure::Error;
use num_complex::{Complex, Complex32};
use ocl::{Buffer, MemFlags, ProQue};
use rand::random;
use std::fmt;
pub static KERNEL: &'static str = include_str!("kernel.cl");
#[derive(Debug)]
pub struct OpenCL {
pub buffer: Buffer<Complex<f32>>,
pro_que: ProQue,
num_qubits: u8,
}
impl OpenCL {
pub fn new(num_qubits: u8) -> Result<OpenCL, Error> {
let num_amps = 2_usize.pow(u32::from(num_qubits)) as usize;
let ocl_pq = ProQue::builder()
.src(KERNEL)
.device(1)
.dims(num_amps)
.build()?;
let buffer: Buffer<Complex32> = Buffer::builder()
.queue(ocl_pq.queue().clone())
.flags(MemFlags::new().read_write())
.len(num_amps)
.build()?;
let apply = ocl_pq
.kernel_builder("initialize_register")
.arg(&buffer)
.arg(0)
.build()?;
unsafe {
apply.enq()?;
}
Ok(OpenCL {
pro_que: ocl_pq,
buffer,
num_qubits,
})
}
fn get_probabilities(&self) -> Result<Vec<f32>, Error> {
let result_buffer: Buffer<f32> = self.pro_que.create_buffer()?;
let apply = self
.pro_que
.kernel_builder("calculate_probabilities")
.arg(&self.buffer)
.arg(&result_buffer)
.build()?;
unsafe {
apply.enq()?;
}
let mut vec_result = vec![0.0f32; self.buffer.len()];
result_buffer.read(&mut vec_result).enq()?;
Ok(vec_result)
}
}
impl Backend for OpenCL {
fn apply_gate(&mut self, gate: Gate, target: u8) -> Result<(), Error> {
let apply = self
.pro_que
.kernel_builder("apply_gate")
.global_work_size(&self.buffer.len() / 2)
.arg(&self.buffer)
.arg(i32::from(target))
.arg(gate.a)
.arg(gate.b)
.arg(gate.c)
.arg(gate.d)
.build()?;
unsafe {
apply.enq()?;
}
Ok(())
}
fn apply_controlled_gate(&mut self, gate: Gate, control: u8, target: u8) -> Result<(), Error> {
let apply = self
.pro_que
.kernel_builder("apply_controlled_gate")
.global_work_size(&self.buffer.len() / 2)
.arg(&self.buffer)
.arg(i32::from(control))
.arg(i32::from(target))
.arg(gate.a)
.arg(gate.b)
.arg(gate.c)
.arg(gate.d)
.build()?;
unsafe {
apply.enq()?;
}
Ok(())
}
fn measure(&mut self) -> Result<u64, Error> {
let probabilities = self.get_probabilities()?;
let mut key = random::<f32>();
if key > 1.0 {
key %= 1.0;
}
let mut i = 0;
while i < probabilities.len() {
key -= probabilities[i];
if key <= 0.0 {
break;
}
i += 1;
}
Ok(i as u64)
}
fn measure_qubit(&mut self, _target: u8) -> Result<u64, Error> {
unimplemented!()
}
fn num_qubits(&self) -> u8 {
self.num_qubits
}
}
impl fmt::Display for OpenCL {
fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
let mut first = true;
let mut vec_result = vec![Complex32::new(0.0, 0.0); self.buffer.len()];
self.buffer
.read(&mut vec_result)
.enq()
.expect("Error Reading Memory From Device");
for (idx, item) in vec_result.iter().enumerate() {
if !first {
write!(f, ", ")?;
} else {
first = false;
}
write!(f, "[{}]: ", idx)?;
if item.im == 0.0 {
write!(f, "{}", item.re)?;
} else if item.re == 0.0 {
write!(f, "{}i", item.im)?;
} else {
write!(f, "{}", item)?;
}
}
Ok(())
}
}