123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117 |
- from __future__ import print_function
- import argparse
- import torch
- import torch.nn as nn
- import torch.nn.functional as F
- import torch.optim as optim
- from torchvision import datasets, transforms
- class Net(nn.Module):
- def __init__(self):
- super(Net, self).__init__()
- self.conv1 = nn.Conv2d(1, 20, 5, 1)
- self.conv2 = nn.Conv2d(20, 50, 5, 1)
- self.fc1 = nn.Linear(4*4*50, 500)
- self.fc2 = nn.Linear(500, 10)
- def forward(self, x):
- x = F.relu(self.conv1(x))
- x = F.max_pool2d(x, 2, 2)
- x = F.relu(self.conv2(x))
- x = F.max_pool2d(x, 2, 2)
- x = x.view(-1, 4*4*50)
- x = F.relu(self.fc1(x))
- x = self.fc2(x)
- return F.log_softmax(x, dim=1)
-
- def train(args, model, device, train_loader, optimizer, epoch):
- model.train()
- for batch_idx, (data, target) in enumerate(train_loader):
- data, target = data.to(device), target.to(device)
- optimizer.zero_grad()
- output = model(data)
- loss = F.nll_loss(output, target)
- loss.backward()
- optimizer.step()
- if batch_idx % args.log_interval == 0:
- print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
- epoch, batch_idx * len(data), len(train_loader.dataset),
- 100. * batch_idx / len(train_loader), loss.item()))
- def test(args, model, device, test_loader):
- model.eval()
- test_loss = 0
- correct = 0
- with torch.no_grad():
- for data, target in test_loader:
- data, target = data.to(device), target.to(device)
- output = model(data)
- test_loss += F.nll_loss(output, target, reduction='sum').item()
- pred = output.max(1, keepdim=True)[1]
- correct += pred.eq(target.view_as(pred)).sum().item()
- test_loss /= len(test_loader.dataset)
- print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
- test_loss, correct, len(test_loader.dataset),
- 100. * correct / len(test_loader.dataset)))
- def main():
-
- parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
- parser.add_argument('--batch-size', type=int, default=64, metavar='N',
- help='input batch size for training (default: 64)')
- parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
- help='input batch size for testing (default: 1000)')
- parser.add_argument('--epochs', type=int, default=10, metavar='N',
- help='number of epochs to train (default: 10)')
- parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
- help='learning rate (default: 0.01)')
- parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
- help='SGD momentum (default: 0.5)')
- parser.add_argument('--no-cuda', action='store_true', default=False,
- help='disables CUDA training')
- parser.add_argument('--seed', type=int, default=1, metavar='S',
- help='random seed (default: 1)')
- parser.add_argument('--log-interval', type=int, default=10, metavar='N',
- help='how many batches to wait before logging training status')
-
- parser.add_argument('--save-model', action='store_true', default=False,
- help='For Saving the current Model')
- args = parser.parse_args()
- use_cuda = not args.no_cuda and torch.cuda.is_available()
- torch.manual_seed(args.seed)
- device = torch.device("cuda" if use_cuda else "cpu")
- kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
- train_loader = torch.utils.data.DataLoader(
- datasets.MNIST('../data', train=True, download=True,
- transform=transforms.Compose([
- transforms.ToTensor(),
- transforms.Normalize((0.1307,), (0.3081,))
- ])),
- batch_size=args.batch_size, shuffle=True, **kwargs)
- test_loader = torch.utils.data.DataLoader(
- datasets.MNIST('../data', train=False, transform=transforms.Compose([
- transforms.ToTensor(),
- transforms.Normalize((0.1307,), (0.3081,))
- ])),
- batch_size=args.test_batch_size, shuffle=True, **kwargs)
- model = Net().to(device)
- optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
- for epoch in range(1, args.epochs + 1):
- train(args, model, device, train_loader, optimizer, epoch)
- test(args, model, device, test_loader)
- if (args.save_model):
- torch.save(model.state_dict(),"mnist_cnn.pt")
-
- if __name__ == '__main__':
- main()
|