mnist.py 4.7 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117
  1. from __future__ import print_function
  2. import argparse
  3. import torch
  4. import torch.nn as nn
  5. import torch.nn.functional as F
  6. import torch.optim as optim
  7. from torchvision import datasets, transforms
  8. class Net(nn.Module):
  9. def __init__(self):
  10. super(Net, self).__init__()
  11. self.conv1 = nn.Conv2d(1, 20, 5, 1)
  12. self.conv2 = nn.Conv2d(20, 50, 5, 1)
  13. self.fc1 = nn.Linear(4*4*50, 500)
  14. self.fc2 = nn.Linear(500, 10)
  15. def forward(self, x):
  16. x = F.relu(self.conv1(x))
  17. x = F.max_pool2d(x, 2, 2)
  18. x = F.relu(self.conv2(x))
  19. x = F.max_pool2d(x, 2, 2)
  20. x = x.view(-1, 4*4*50)
  21. x = F.relu(self.fc1(x))
  22. x = self.fc2(x)
  23. return F.log_softmax(x, dim=1)
  24. def train(args, model, device, train_loader, optimizer, epoch):
  25. model.train()
  26. for batch_idx, (data, target) in enumerate(train_loader):
  27. data, target = data.to(device), target.to(device)
  28. optimizer.zero_grad()
  29. output = model(data)
  30. loss = F.nll_loss(output, target)
  31. loss.backward()
  32. optimizer.step()
  33. if batch_idx % args.log_interval == 0:
  34. print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format(
  35. epoch, batch_idx * len(data), len(train_loader.dataset),
  36. 100. * batch_idx / len(train_loader), loss.item()))
  37. def test(args, model, device, test_loader):
  38. model.eval()
  39. test_loss = 0
  40. correct = 0
  41. with torch.no_grad():
  42. for data, target in test_loader:
  43. data, target = data.to(device), target.to(device)
  44. output = model(data)
  45. test_loss += F.nll_loss(output, target, reduction='sum').item() # sum up batch loss
  46. pred = output.max(1, keepdim=True)[1] # get the index of the max log-probability
  47. correct += pred.eq(target.view_as(pred)).sum().item()
  48. test_loss /= len(test_loader.dataset)
  49. print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format(
  50. test_loss, correct, len(test_loader.dataset),
  51. 100. * correct / len(test_loader.dataset)))
  52. def main():
  53. # Training settings
  54. parser = argparse.ArgumentParser(description='PyTorch MNIST Example')
  55. parser.add_argument('--batch-size', type=int, default=64, metavar='N',
  56. help='input batch size for training (default: 64)')
  57. parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N',
  58. help='input batch size for testing (default: 1000)')
  59. parser.add_argument('--epochs', type=int, default=10, metavar='N',
  60. help='number of epochs to train (default: 10)')
  61. parser.add_argument('--lr', type=float, default=0.01, metavar='LR',
  62. help='learning rate (default: 0.01)')
  63. parser.add_argument('--momentum', type=float, default=0.5, metavar='M',
  64. help='SGD momentum (default: 0.5)')
  65. parser.add_argument('--no-cuda', action='store_true', default=False,
  66. help='disables CUDA training')
  67. parser.add_argument('--seed', type=int, default=1, metavar='S',
  68. help='random seed (default: 1)')
  69. parser.add_argument('--log-interval', type=int, default=10, metavar='N',
  70. help='how many batches to wait before logging training status')
  71. parser.add_argument('--save-model', action='store_true', default=False,
  72. help='For Saving the current Model')
  73. args = parser.parse_args()
  74. use_cuda = not args.no_cuda and torch.cuda.is_available()
  75. torch.manual_seed(args.seed)
  76. device = torch.device("cuda" if use_cuda else "cpu")
  77. kwargs = {'num_workers': 1, 'pin_memory': True} if use_cuda else {}
  78. train_loader = torch.utils.data.DataLoader(
  79. datasets.MNIST('../data', train=True, download=True,
  80. transform=transforms.Compose([
  81. transforms.ToTensor(),
  82. transforms.Normalize((0.1307,), (0.3081,))
  83. ])),
  84. batch_size=args.batch_size, shuffle=True, **kwargs)
  85. test_loader = torch.utils.data.DataLoader(
  86. datasets.MNIST('../data', train=False, transform=transforms.Compose([
  87. transforms.ToTensor(),
  88. transforms.Normalize((0.1307,), (0.3081,))
  89. ])),
  90. batch_size=args.test_batch_size, shuffle=True, **kwargs)
  91. model = Net().to(device)
  92. optimizer = optim.SGD(model.parameters(), lr=args.lr, momentum=args.momentum)
  93. for epoch in range(1, args.epochs + 1):
  94. train(args, model, device, train_loader, optimizer, epoch)
  95. test(args, model, device, test_loader)
  96. if (args.save_model):
  97. torch.save(model.state_dict(),"mnist_cnn.pt")
  98. if __name__ == '__main__':
  99. main()