""" Copied from https://github.com/teamclairvoyant/airflow-maintenance-dags/blob/master/db-cleanup/airflow-db-cleanup.py A maintenance workflow that you can deploy into Airflow to periodically clean out the DagRun, TaskInstance, Log, XCom, Job DB and SlaMiss entries to avoid having too much data in your Airflow MetaStore. airflow trigger_dag --conf '[curly-braces]"maxDBEntryAgeInDays":30[curly-braces]' airflow-db-cleanup --conf options: maxDBEntryAgeInDays: - Optional """ import airflow from airflow import settings from airflow.configuration import conf from airflow.models import DAG, DagModel, DagRun, Log, XCom, SlaMiss, TaskInstance, Variable try: from airflow.jobs import BaseJob except Exception as e: from airflow.jobs.base_job import BaseJob from airflow.operators.python_operator import PythonOperator from datetime import datetime, timedelta import dateutil.parser import logging import os from sqlalchemy import func, and_ from sqlalchemy.exc import ProgrammingError from sqlalchemy.orm import load_only try: # airflow.utils.timezone is available from v1.10 onwards from airflow.utils import timezone now = timezone.utcnow except ImportError: now = datetime.utcnow # airflow-db-cleanup DAG_ID = os.path.basename(__file__).replace(".pyc", "").replace(".py", "") START_DATE = airflow.utils.dates.days_ago(1) # How often to Run. @daily - Once a day at Midnight (UTC) SCHEDULE_INTERVAL = "@daily" # Who is listed as the owner of this DAG in the Airflow Web Server DAG_OWNER_NAME = "airflow" # Length to retain the log files if not already provided in the conf. If this # is set to 30, the job will remove those files that arE 30 days old or older. DEFAULT_MAX_DB_ENTRY_AGE_IN_DAYS = int( Variable.get("airflow_db_cleanup__max_db_entry_age_in_days", 30) ) # Prints the database entries which will be getting deleted; set to False to avoid printing large lists and slowdown process PRINT_DELETES = True # Whether the job should delete the db entries or not. Included if you want to # temporarily avoid deleting the db entries. ENABLE_DELETE = True # List of all the objects that will be deleted. Comment out the DB objects you # want to skip. DATABASE_OBJECTS = [ { "airflow_db_model": BaseJob, "age_check_column": BaseJob.latest_heartbeat, "keep_last": False, "keep_last_filters": None, "keep_last_group_by": None }, { "airflow_db_model": DagRun, "age_check_column": DagRun.execution_date, "keep_last": True, "keep_last_filters": [DagRun.external_trigger.is_(False)], "keep_last_group_by": DagRun.dag_id }, { "airflow_db_model": TaskInstance, "age_check_column": TaskInstance.execution_date, "keep_last": False, "keep_last_filters": None, "keep_last_group_by": None }, { "airflow_db_model": Log, "age_check_column": Log.dttm, "keep_last": False, "keep_last_filters": None, "keep_last_group_by": None }, { "airflow_db_model": XCom, "age_check_column": XCom.execution_date, "keep_last": False, "keep_last_filters": None, "keep_last_group_by": None }, { "airflow_db_model": SlaMiss, "age_check_column": SlaMiss.execution_date, "keep_last": False, "keep_last_filters": None, "keep_last_group_by": None }, { "airflow_db_model": DagModel, "age_check_column": DagModel.last_scheduler_run, "keep_last": False, "keep_last_filters": None, "keep_last_group_by": None }] # Check for TaskReschedule model try: from airflow.models import TaskReschedule DATABASE_OBJECTS.append({ "airflow_db_model": TaskReschedule, "age_check_column": TaskReschedule.execution_date, "keep_last": False, "keep_last_filters": None, "keep_last_group_by": None }) except Exception as e: logging.error(e) # Check for TaskFail model try: from airflow.models import TaskFail DATABASE_OBJECTS.append({ "airflow_db_model": TaskFail, "age_check_column": TaskFail.execution_date, "keep_last": False, "keep_last_filters": None, "keep_last_group_by": None }) except Exception as e: logging.error(e) # Check for RenderedTaskInstanceFields model try: from airflow.models import RenderedTaskInstanceFields DATABASE_OBJECTS.append({ "airflow_db_model": RenderedTaskInstanceFields, "age_check_column": RenderedTaskInstanceFields.execution_date, "keep_last": False, "keep_last_filters": None, "keep_last_group_by": None }) except Exception as e: logging.error(e) # Check for ImportError model try: from airflow.models import ImportError DATABASE_OBJECTS.append({ "airflow_db_model": ImportError, "age_check_column": ImportError.timestamp, "keep_last": False, "keep_last_filters": None, "keep_last_group_by": None }) except Exception as e: logging.error(e) # Check for celery executor airflow_executor = str(conf.get("core", "executor")) logging.info("Airflow Executor: " + str(airflow_executor)) if(airflow_executor == "CeleryExecutor"): logging.info("Including Celery Modules") try: from celery.backends.database.models import Task, TaskSet DATABASE_OBJECTS.extend(({ "airflow_db_model": Task, "age_check_column": Task.date_done, "keep_last": False, "keep_last_filters": None, "keep_last_group_by": None }, { "airflow_db_model": TaskSet, "age_check_column": TaskSet.date_done, "keep_last": False, "keep_last_filters": None, "keep_last_group_by": None })) except Exception as e: logging.error(e) session = settings.Session() default_args = { 'owner': DAG_OWNER_NAME, 'depends_on_past': False, 'email_on_failure': False, 'email_on_retry': False, 'start_date': START_DATE, 'retries': 1, 'retry_delay': timedelta(minutes=1) } dag = DAG( DAG_ID, default_args=default_args, schedule_interval=SCHEDULE_INTERVAL, start_date=START_DATE ) if hasattr(dag, 'doc_md'): dag.doc_md = __doc__ if hasattr(dag, 'catchup'): dag.catchup = False def print_configuration_function(**context): logging.info("Loading Configurations...") dag_run_conf = context.get("dag_run").conf logging.info("dag_run.conf: " + str(dag_run_conf)) max_db_entry_age_in_days = None if dag_run_conf: max_db_entry_age_in_days = dag_run_conf.get( "maxDBEntryAgeInDays", None ) logging.info("maxDBEntryAgeInDays from dag_run.conf: " + str(dag_run_conf)) if (max_db_entry_age_in_days is None or max_db_entry_age_in_days < 1): logging.info( "maxDBEntryAgeInDays conf variable isn't included or Variable " + "value is less than 1. Using Default '" + str(DEFAULT_MAX_DB_ENTRY_AGE_IN_DAYS) + "'" ) max_db_entry_age_in_days = DEFAULT_MAX_DB_ENTRY_AGE_IN_DAYS max_date = now() + timedelta(-max_db_entry_age_in_days) logging.info("Finished Loading Configurations") logging.info("") logging.info("Configurations:") logging.info("max_db_entry_age_in_days: " + str(max_db_entry_age_in_days)) logging.info("max_date: " + str(max_date)) logging.info("enable_delete: " + str(ENABLE_DELETE)) logging.info("session: " + str(session)) logging.info("") logging.info("Setting max_execution_date to XCom for Downstream Processes") context["ti"].xcom_push(key="max_date", value=max_date.isoformat()) print_configuration = PythonOperator( task_id='print_configuration', python_callable=print_configuration_function, provide_context=True, dag=dag) def cleanup_function(**context): logging.info("Retrieving max_execution_date from XCom") max_date = context["ti"].xcom_pull( task_ids=print_configuration.task_id, key="max_date" ) max_date = dateutil.parser.parse(max_date) # stored as iso8601 str in xcom airflow_db_model = context["params"].get("airflow_db_model") state = context["params"].get("state") age_check_column = context["params"].get("age_check_column") keep_last = context["params"].get("keep_last") keep_last_filters = context["params"].get("keep_last_filters") keep_last_group_by = context["params"].get("keep_last_group_by") logging.info("Configurations:") logging.info("max_date: " + str(max_date)) logging.info("enable_delete: " + str(ENABLE_DELETE)) logging.info("session: " + str(session)) logging.info("airflow_db_model: " + str(airflow_db_model)) logging.info("state: " + str(state)) logging.info("age_check_column: " + str(age_check_column)) logging.info("keep_last: " + str(keep_last)) logging.info("keep_last_filters: " + str(keep_last_filters)) logging.info("keep_last_group_by: " + str(keep_last_group_by)) logging.info("") logging.info("Running Cleanup Process...") try: query = session.query(airflow_db_model).options( load_only(age_check_column) ) logging.info("INITIAL QUERY : " + str(query)) if keep_last: subquery = session.query(func.max(DagRun.execution_date)) # workaround for MySQL "table specified twice" issue # https://github.com/teamclairvoyant/airflow-maintenance-dags/issues/41 if keep_last_filters is not None: for entry in keep_last_filters: subquery = subquery.filter(entry) logging.info("SUB QUERY [keep_last_filters]: " + str(subquery)) if keep_last_group_by is not None: subquery = subquery.group_by(keep_last_group_by) logging.info( "SUB QUERY [keep_last_group_by]: " + str(subquery)) subquery = subquery.from_self() query = query.filter( and_(age_check_column.notin_(subquery)), and_(age_check_column <= max_date) ) else: query = query.filter(age_check_column <= max_date,) if PRINT_DELETES: entries_to_delete = query.all() logging.info("Query: " + str(query)) logging.info( "Process will be Deleting the following " + str(airflow_db_model.__name__) + "(s):" ) for entry in entries_to_delete: logging.info( "\tEntry: " + str(entry) + ", Date: " + str(entry.__dict__[str(age_check_column).split(".")[1]]) ) logging.info( "Process will be Deleting " + str(len(entries_to_delete)) + " " + str(airflow_db_model.__name__) + "(s)" ) else: logging.warn( "You've opted to skip printing the db entries to be deleted. Set PRINT_DELETES to True to show entries!!!") if ENABLE_DELETE: logging.info("Performing Delete...") # using bulk delete query.delete(synchronize_session=False) session.commit() logging.info("Finished Performing Delete") else: logging.warn( "You've opted to skip deleting the db entries. Set ENABLE_DELETE to True to delete entries!!!") logging.info("Finished Running Cleanup Process") except ProgrammingError as e: logging.error(e) logging.error(str(airflow_db_model) + " is not present in the metadata. Skipping...") for db_object in DATABASE_OBJECTS: cleanup_op = PythonOperator( task_id='cleanup_' + str(db_object["airflow_db_model"].__name__), python_callable=cleanup_function, params=db_object, provide_context=True, dag=dag ) print_configuration.set_downstream(cleanup_op)