1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495 |
- import os
- from datetime import timedelta
- from airflow.models import DAG, Variable
- from airflow.utils.dates import days_ago
- from airflow.operators.python_operator import PythonOperator
- from airflow.operators.python_operator import BranchPythonOperator
- from airflow.operators.dummy_operator import DummyOperator
- from airflow.operators.dagrun_operator import TriggerDagRunOperator
- #from airflow.operators.trigger_dagrun import TriggerDagRunOperator # FIX for v2
- from igf_airflow.utils.dag18_upload_and_trigger_analysis_utils import find_analysis_designs_func
- from igf_airflow.utils.dag18_upload_and_trigger_analysis_utils import load_analysis_design_func
- from igf_airflow.utils.dag18_upload_and_trigger_analysis_utils import find_analysis_to_trigger_dags_func
- args = {
- 'owner': 'airflow',
- 'start_date': days_ago(2),
- 'retries': 1,
- 'retry_delay': timedelta(minutes=5),
- 'provide_context': True,
- 'email_on_failure': False,
- 'email_on_retry': False,
- 'catchup': False,
- 'max_active_runs': 1}
- DAG_ID = \
- os.path.basename(__file__).\
- replace(".pyc", "").\
- replace(".py", "")
- dag = \
- DAG(
- dag_id=DAG_ID,
- schedule_interval=None,
- default_args=args,
- tags=['hpc'])
- ANALYSIS_LIST = \
- Variable.get("analysis_dag_list", default_var={})
- with dag:
- ## TASK
- find_analysis_designs = \
- BranchPythonOperator(
- task_id="find_analysis_designs",
- dag=dag,
- queue='hpc_4G',
- params={
- "load_analysis_task_prefix": "load_analysis_design",
- "no_task_name":"no_task",
- "load_task_limit": 20,
- "load_design_xcom_key": "load_design"},
- python_callable=find_analysis_designs_func)
- ## TASK
- no_task = \
- DummyOperator(
- task_id="no_task",
- dag=dag)
- ## TASK
- load_analysis_design_tasks = [no_task]
- for i in range(0, 20):
- t = \
- PythonOperator(
- task_id="load_analysis_design_{i}".format(i),
- dag=dag,
- params={
- "task_index": i,
- "load_design_xcom_key": "load_design",
- "load_design_xcom_task": "find_analysis_designs"},
- python_callable=load_analysis_design_func)
- load_analysis_design_tasks.append(t)
- ## TASK
- find_analysis_to_trigger_dags = \
- BranchPythonOperator(
- task_id="find_analysis_to_trigger_dags",
- dag=dag,
- queue='hpc_4G',
- params={
- "no_trigger_task": "no_trigger",
- "analysis_limit": 20,
- "trigger_task_prefix": "trigger"},
- trigger_rule='none_failed_or_skipped',
- python_callable=find_analysis_to_trigger_dags_func)
- ## TASK
- trigger_analysis_dag_tasks = list()
- for analysis_name in ANALYSIS_LIST.keys():
- for i in (range(0, 20)):
- t = \
- TriggerDagRunOperator(
- task_id="trigger_{0}_{0}".format(analysis_name, i),
- dag=dag,
- trigger_dag_id=analysis_name,
- queue='hpc_4G',
- params={},
- python_callable=None)
- trigger_analysis_dag_tasks.append(t)
- ## PIPELINE
- find_analysis_designs >> load_analysis_design_tasks
- load_analysis_design_tasks >> find_analysis_to_trigger_dags
- find_analysis_to_trigger_dags >> trigger_analysis_dag_tasks
|