dag9_tenx_single_cell_immune_profiling.py 44 KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973974975976977978979980981982983984985986987988989990991992993994995996997998999100010011002100310041005100610071008100910101011101210131014101510161017101810191020102110221023102410251026102710281029103010311032103310341035103610371038103910401041104210431044104510461047
  1. from datetime import timedelta
  2. import os,json,logging,subprocess
  3. from airflow.models import DAG,Variable
  4. from airflow.utils.dates import days_ago
  5. from airflow.operators.python_operator import PythonOperator
  6. from airflow.operators.python_operator import BranchPythonOperator
  7. from airflow.operators.dummy_operator import DummyOperator
  8. from igf_airflow.utils.dag9_tenx_single_cell_immune_profiling_utils import fetch_analysis_info_and_branch_func
  9. from igf_airflow.utils.dag9_tenx_single_cell_immune_profiling_utils import configure_cellranger_run_func
  10. from igf_airflow.utils.dag9_tenx_single_cell_immune_profiling_utils import run_sc_read_trimmming_func
  11. from igf_airflow.utils.dag9_tenx_single_cell_immune_profiling_utils import run_cellranger_tool
  12. from igf_airflow.utils.dag9_tenx_single_cell_immune_profiling_utils import decide_analysis_branch_func
  13. from igf_airflow.utils.dag9_tenx_single_cell_immune_profiling_utils import load_cellranger_result_to_db_func
  14. from igf_airflow.utils.dag9_tenx_single_cell_immune_profiling_utils import ftp_files_upload_for_analysis
  15. from igf_airflow.utils.dag9_tenx_single_cell_immune_profiling_utils import irods_files_upload_for_analysis
  16. from igf_airflow.utils.dag9_tenx_single_cell_immune_profiling_utils import run_singlecell_notebook_wrapper_func
  17. from igf_airflow.utils.dag9_tenx_single_cell_immune_profiling_utils import load_analysis_files_func
  18. from igf_airflow.utils.dag9_tenx_single_cell_immune_profiling_utils import task_branch_function
  19. from igf_airflow.utils.dag9_tenx_single_cell_immune_profiling_utils import upload_analysis_file_to_box
  20. from igf_airflow.utils.dag9_tenx_single_cell_immune_profiling_utils import convert_bam_to_cram_func
  21. from igf_airflow.utils.dag9_tenx_single_cell_immune_profiling_utils import run_picard_for_cellranger
  22. from igf_airflow.utils.dag9_tenx_single_cell_immune_profiling_utils import run_samtools_for_cellranger
  23. from igf_airflow.utils.dag9_tenx_single_cell_immune_profiling_utils import run_multiqc_for_cellranger
  24. from igf_airflow.utils.dag9_tenx_single_cell_immune_profiling_utils import index_and_copy_bam_for_parallel_analysis
  25. from igf_airflow.utils.dag9_tenx_single_cell_immune_profiling_utils import change_pipeline_status
  26. from igf_airflow.utils.dag9_tenx_single_cell_immune_profiling_utils import clean_up_files
  27. from igf_airflow.utils.dag9_tenx_single_cell_immune_profiling_utils import create_and_update_qc_pages
  28. from igf_airflow.utils.dag9_tenx_single_cell_immune_profiling_utils import load_cellranger_metrices_to_collection
  29. from igf_airflow.utils.dag9_tenx_single_cell_immune_profiling_utils import generate_cell_sorted_bam_func
  30. from igf_airflow.utils.dag9_tenx_single_cell_immune_profiling_utils import run_velocyto_func
  31. from igf_airflow.utils.dag9_tenx_single_cell_immune_profiling_utils import run_scvelo_for_sc_5p_func
  32. from igf_airflow.utils.dag9_tenx_single_cell_immune_profiling_utils import load_loom_file_to_rds_func
  33. ## ARGS
  34. default_args = {
  35. 'owner': 'airflow',
  36. 'depends_on_past': False,
  37. 'start_date': days_ago(2),
  38. 'email_on_failure': False,
  39. 'email_on_retry': False,
  40. 'retries': 4,
  41. 'max_active_runs':10,
  42. 'catchup':True,
  43. 'retry_delay': timedelta(minutes=5),
  44. 'provide_context': True,
  45. }
  46. FEATURE_TYPE_LIST = \
  47. Variable.get('tenx_single_cell_immune_profiling_feature_types',default_var={})#.split(',')
  48. ## DAG
  49. dag = \
  50. DAG(
  51. dag_id='dag9_tenx_single_cell_immune_profiling',
  52. schedule_interval=None,
  53. tags=['hpc','analysis','tenx','sc'],
  54. default_args=default_args,
  55. concurrency=100,
  56. max_active_runs=20,
  57. orientation='LR')
  58. with dag:
  59. ## TASK
  60. fetch_analysis_info_and_branch = \
  61. BranchPythonOperator(
  62. task_id='fetch_analysis_info',
  63. dag=dag,
  64. queue='hpc_4G',
  65. params={'no_analysis_task':'no_analysis',
  66. 'analysis_description_xcom_key':'analysis_description',
  67. 'analysis_info_xcom_key':'analysis_info'},
  68. python_callable=fetch_analysis_info_and_branch_func)
  69. ## TASK
  70. configure_cellranger_run = \
  71. PythonOperator(
  72. task_id='configure_cellranger_run',
  73. dag=dag,
  74. queue='hpc_4G',
  75. trigger_rule='none_failed_or_skipped',
  76. params={'xcom_pull_task_id':'fetch_analysis_info',
  77. 'analysis_description_xcom_key':'analysis_description',
  78. 'analysis_info_xcom_key':'analysis_info',
  79. 'library_csv_xcom_key':'cellranger_library_csv'},
  80. python_callable=configure_cellranger_run_func)
  81. for analysis_name in FEATURE_TYPE_LIST.keys():
  82. ## TASK
  83. task_branch = \
  84. BranchPythonOperator(
  85. task_id=analysis_name,
  86. dag=dag,
  87. queue='hpc_4G',
  88. params={'xcom_pull_task_id':'fetch_analysis_info',
  89. 'analysis_info_xcom_key':'analysis_info',
  90. 'analysis_name':analysis_name,
  91. 'task_prefix':'run_trim'},
  92. python_callable=task_branch_function)
  93. run_trim_list = list()
  94. for run_id in range(0,10):
  95. ## TASK
  96. t = \
  97. PythonOperator(
  98. task_id='run_trim_{0}_{1}'.format(analysis_name,run_id),
  99. dag=dag,
  100. queue='hpc_4G',
  101. params={'xcom_pull_task_id':'fetch_analysis_info',
  102. 'analysis_info_xcom_key':'analysis_info',
  103. 'analysis_description_xcom_key':'analysis_description',
  104. 'analysis_name':analysis_name,
  105. 'run_id':run_id,
  106. 'r1-length':0,
  107. 'r2-length':0,
  108. 'fastq_input_dir_tag':'fastq_dir',
  109. 'use_ephemeral_space':True,
  110. 'fastq_output_dir_tag':'output_path'},
  111. python_callable=run_sc_read_trimmming_func)
  112. run_trim_list.append(t)
  113. ## TASK
  114. collect_trimmed_files = \
  115. DummyOperator(
  116. task_id='collect_trimmed_files_{0}'.format(analysis_name),
  117. trigger_rule='none_failed_or_skipped',
  118. dag=dag)
  119. ## PIPELINE
  120. fetch_analysis_info_and_branch >> task_branch
  121. task_branch >> run_trim_list
  122. run_trim_list >> collect_trimmed_files
  123. collect_trimmed_files >> configure_cellranger_run
  124. ## TASK
  125. no_analysis = \
  126. DummyOperator(
  127. task_id='no_analysis',
  128. dag=dag)
  129. ## PIPELINE
  130. fetch_analysis_info_and_branch >> no_analysis
  131. ## TASK
  132. run_cellranger = \
  133. PythonOperator(
  134. task_id='run_cellranger',
  135. dag=dag,
  136. queue='hpc_64G16t24hr',
  137. params={'analysis_description_xcom_pull_task':'fetch_analysis_info',
  138. 'analysis_description_xcom_key':'analysis_description',
  139. 'library_csv_xcom_key':'cellranger_library_csv',
  140. 'library_csv_xcom_pull_task':'configure_cellranger_run',
  141. 'cellranger_xcom_key':'cellranger_output',
  142. 'cellranger_options':['--localcores 16','--localmem 64']},
  143. python_callable=run_cellranger_tool)
  144. ## PIPELINE
  145. configure_cellranger_run >> run_cellranger
  146. ## TASK
  147. decide_analysis_branch = \
  148. BranchPythonOperator(
  149. task_id='decide_analysis_branch',
  150. dag=dag,
  151. queue='hpc_4G',
  152. python_callable=decide_analysis_branch_func,
  153. params={'load_cellranger_result_to_db_task':'load_cellranger_result_to_db',
  154. 'run_scanpy_for_sc_5p_task':'run_scanpy_for_sc_5p',
  155. 'run_scirpy_for_vdj_task':'run_scirpy_for_vdj',
  156. 'run_scirpy_for_vdj_b_task':'run_scirpy_for_vdj_b',
  157. 'run_scirpy_vdj_t_task':'run_scirpy_for_vdj_t',
  158. 'run_seurat_for_sc_5p_task':'run_seurat_for_sc_5p',
  159. 'convert_cellranger_bam_to_cram_task':'convert_cellranger_bam_to_cram',
  160. 'library_csv_xcom_key':'cellranger_library_csv',
  161. 'library_csv_xcom_pull_task':'configure_cellranger_run'})
  162. ## PIPELINE
  163. run_cellranger >> decide_analysis_branch
  164. ## TASK
  165. load_cellranger_result_to_db = \
  166. PythonOperator(
  167. task_id='load_cellranger_result_to_db',
  168. dag=dag,
  169. queue='hpc_4G',
  170. python_callable=load_cellranger_result_to_db_func,
  171. params={'analysis_description_xcom_pull_task':'fetch_analysis_info',
  172. 'analysis_description_xcom_key':'analysis_description',
  173. 'cellranger_xcom_key':'cellranger_output',
  174. 'cellranger_xcom_pull_task':'run_cellranger',
  175. 'collection_type':'CELLRANGER_MULTI',
  176. 'html_collection_type':'CELLRANGER_HTML',
  177. 'collection_table':'sample',
  178. 'xcom_collection_name_key':'sample_igf_id',
  179. 'genome_column':'genome_build',
  180. 'analysis_name':'cellranger_multi',
  181. 'output_xcom_key':'loaded_output_files',
  182. 'html_xcom_key':'html_report_file',
  183. 'html_report_file_name':'web_summary.html'})
  184. upload_cellranger_report_to_ftp = \
  185. PythonOperator(
  186. task_id='upload_cellranger_report_to_ftp',
  187. dag=dag,
  188. queue='hpc_4G',
  189. python_callable=ftp_files_upload_for_analysis,
  190. params={'xcom_pull_task':'load_cellranger_result_to_db',
  191. 'xcom_pull_files_key':'html_report_file',
  192. 'collection_name_task':'load_cellranger_result_to_db',
  193. 'collection_name_key':'sample_igf_id',
  194. 'collection_type':'FTP_CELLRANGER_HTML',
  195. 'collection_table':'sample',
  196. 'collect_remote_file':True})
  197. upload_cellranger_report_to_box = \
  198. PythonOperator(
  199. task_id='upload_cellranger_report_to_box',
  200. dag=dag,
  201. queue='hpc_4G',
  202. python_callable=upload_analysis_file_to_box,
  203. params={'xcom_pull_task':'load_cellranger_result_to_db',
  204. 'xcom_pull_files_key':'html_report_file',
  205. 'analysis_tag':'cellranger_multi'})
  206. upload_cellranger_results_to_irods = \
  207. PythonOperator(
  208. task_id='upload_cellranger_results_to_irods',
  209. dag=dag,
  210. queue='hpc_4G',
  211. python_callable=irods_files_upload_for_analysis,
  212. params={'xcom_pull_task':'load_cellranger_result_to_db',
  213. 'xcom_pull_files_key':'loaded_output_files',
  214. 'collection_name_key':'sample_igf_id',
  215. 'collection_name_task':'load_cellranger_result_to_db',
  216. 'analysis_name':'cellranger_multi'})
  217. ## PIPELINE
  218. decide_analysis_branch >> load_cellranger_result_to_db
  219. load_cellranger_result_to_db >> upload_cellranger_report_to_ftp
  220. load_cellranger_result_to_db >> upload_cellranger_report_to_box
  221. load_cellranger_result_to_db >> upload_cellranger_results_to_irods
  222. ## TASK
  223. run_scanpy_for_sc_5p = \
  224. PythonOperator(
  225. task_id='run_scanpy_for_sc_5p',
  226. dag=dag,
  227. queue='hpc_4G',
  228. python_callable=run_singlecell_notebook_wrapper_func,
  229. params={'cellranger_xcom_key':'cellranger_output',
  230. 'cellranger_xcom_pull_task':'run_cellranger',
  231. 'scanpy_timeout':1200,
  232. 'allow_errors':False,
  233. 'kernel_name':'python3',
  234. 'count_dir':'count',
  235. 'analysis_name':'scanpy',
  236. 'output_notebook_key':'scanpy_notebook',
  237. 'output_cellbrowser_key':'cellbrowser_dirs',
  238. 'analysis_description_xcom_pull_task':'fetch_analysis_info',
  239. 'analysis_description_xcom_key':'analysis_description'})
  240. load_cellranger_gex_matrics_to_db = \
  241. PythonOperator(
  242. task_id='load_cellranger_gex_matrics_to_db',
  243. dag=dag,
  244. queue='hpc_4G',
  245. python_callable=load_cellranger_metrices_to_collection,
  246. params={'cellranger_xcom_key':'cellranger_output',
  247. 'cellranger_xcom_pull_task':'run_cellranger',
  248. 'collection_type':'CELLRANGER_MULTI',
  249. 'collection_name_task':'load_cellranger_result_to_db',
  250. 'collection_name_key':'sample_igf_id',
  251. 'metrics_summary_file':'count/metrics_summary.csv',
  252. 'attribute_prefix':'CELLRANGER_COUNT'})
  253. load_scanpy_report_for_sc_5p_to_db = \
  254. PythonOperator(
  255. task_id='load_scanpy_report_for_sc_5p_to_db',
  256. dag=dag,
  257. queue='hpc_4G',
  258. python_callable=load_analysis_files_func,
  259. params={'collection_name_task':'load_cellranger_result_to_db',
  260. 'collection_name_key':'sample_igf_id',
  261. 'file_name_task':'run_scanpy_for_sc_5p',
  262. 'file_name_key':'scanpy_notebook',
  263. 'analysis_name':'scanpy_5p',
  264. 'collection_type':'SCANPY_HTML',
  265. 'collection_table':'sample',
  266. 'output_files_key':'output_db_files'})
  267. upload_scanpy_report_for_sc_5p_to_ftp = \
  268. PythonOperator(
  269. task_id='upload_scanpy_report_for_sc_5p_to_ftp',
  270. dag=dag,
  271. queue='hpc_4G',
  272. python_callable=ftp_files_upload_for_analysis,
  273. params={'xcom_pull_task':'load_scanpy_report_for_sc_5p_to_db',
  274. 'xcom_pull_files_key':'output_db_files',
  275. 'collection_name_task':'load_cellranger_result_to_db',
  276. 'collection_name_key':'sample_igf_id',
  277. 'collection_type':'FTP_SCANPY_HTML',
  278. 'collection_table':'sample',
  279. 'collect_remote_file':True})
  280. upload_scanpy_report_for_sc_5p_to_box = \
  281. PythonOperator(
  282. task_id='upload_scanpy_report_for_sc_5p_to_box',
  283. dag=dag,
  284. queue='hpc_4G',
  285. python_callable=upload_analysis_file_to_box,
  286. params={'xcom_pull_task':'load_scanpy_report_for_sc_5p_to_db',
  287. 'xcom_pull_files_key':'output_db_files',
  288. 'analysis_tag':'scanpy_single_sample_report'})
  289. upload_cellbrowser_for_sc_5p_to_ftp = \
  290. PythonOperator(
  291. task_id='upload_cellbrowser_for_sc_5p_to_ftp',
  292. dag=dag,
  293. queue='hpc_4G',
  294. python_callable=ftp_files_upload_for_analysis,
  295. params={'xcom_pull_task':'run_scanpy_for_sc_5p',
  296. 'xcom_pull_files_key':'cellbrowser_dirs',
  297. 'collection_name_task':'load_cellranger_result_to_db',
  298. 'collection_name_key':'sample_igf_id',
  299. 'collection_type':'FTP_CELLBROWSER',
  300. 'collection_table':'sample',
  301. 'collect_remote_file':True})
  302. ## PIPELINE
  303. decide_analysis_branch >> run_scanpy_for_sc_5p
  304. run_scanpy_for_sc_5p >> load_scanpy_report_for_sc_5p_to_db
  305. run_scanpy_for_sc_5p >> load_cellranger_gex_matrics_to_db
  306. load_scanpy_report_for_sc_5p_to_db >> upload_scanpy_report_for_sc_5p_to_ftp
  307. load_scanpy_report_for_sc_5p_to_db >> upload_scanpy_report_for_sc_5p_to_box
  308. run_scanpy_for_sc_5p >> upload_cellbrowser_for_sc_5p_to_ftp
  309. ## TASK
  310. run_scirpy_for_vdj_b = \
  311. PythonOperator(
  312. task_id='run_scirpy_for_vdj_b',
  313. dag=dag,
  314. queue='hpc_4G',
  315. python_callable=run_singlecell_notebook_wrapper_func,
  316. params={'cellranger_xcom_key':'cellranger_output',
  317. 'cellranger_xcom_pull_task':'run_cellranger',
  318. 'scanpy_timeout':1200,
  319. 'allow_errors':False,
  320. 'kernel_name':'python3',
  321. 'analysis_name':'scirpy',
  322. 'vdj_dir':'vdj_b',
  323. 'count_dir':'count',
  324. 'output_notebook_key':'scirpy_notebook',
  325. 'analysis_description_xcom_pull_task':'fetch_analysis_info',
  326. 'analysis_description_xcom_key':'analysis_description'})
  327. load_cellranger_vdjB_matrics_to_db = \
  328. PythonOperator(
  329. task_id='load_cellranger_vdjB_matrics_to_db',
  330. dag=dag,
  331. queue='hpc_4G',
  332. python_callable=load_cellranger_metrices_to_collection,
  333. params={'cellranger_xcom_key':'cellranger_output',
  334. 'cellranger_xcom_pull_task':'run_cellranger',
  335. 'collection_type':'CELLRANGER_MULTI',
  336. 'collection_name_task':'load_cellranger_result_to_db',
  337. 'collection_name_key':'sample_igf_id',
  338. 'metrics_summary_file':'vdj_b/metrics_summary.csv',
  339. 'attribute_prefix':'CELLRANGER_VDJB'})
  340. load_scirpy_report_for_vdj_b_to_db = \
  341. PythonOperator(
  342. task_id='load_scirpy_report_for_vdj_b_to_db',
  343. dag=dag,
  344. queue='hpc_4G',
  345. python_callable=load_analysis_files_func,
  346. params={'collection_name_task':'load_cellranger_result_to_db',
  347. 'collection_name_key':'sample_igf_id',
  348. 'file_name_task':'run_scirpy_for_vdj_b',
  349. 'file_name_key':'scirpy_notebook',
  350. 'analysis_name':'scirpy_vdj_b',
  351. 'collection_type':'SCIRPY_VDJ_B_HTML',
  352. 'collection_table':'sample',
  353. 'output_files_key':'output_db_files'})
  354. upload_scirpy_report_for_vdj_b_to_ftp = \
  355. PythonOperator(
  356. task_id='upload_scirpy_report_for_vdj_b_to_ftp',
  357. dag=dag,
  358. queue='hpc_4G',
  359. python_callable=ftp_files_upload_for_analysis,
  360. params={'xcom_pull_task':'load_scirpy_report_for_vdj_b_to_db',
  361. 'xcom_pull_files_key':'output_db_files',
  362. 'collection_name_task':'load_cellranger_result_to_db',
  363. 'collection_name_key':'sample_igf_id',
  364. 'collection_type':'FTP_SCIRPY_VDJ_B_HTML',
  365. 'collection_table':'sample',
  366. 'collect_remote_file':True})
  367. upload_scirpy_report_for_vdj_b_to_box = \
  368. PythonOperator(
  369. task_id='upload_scanpy_report_for_vdj_b_to_box',
  370. dag=dag,
  371. queue='hpc_4G',
  372. python_callable=upload_analysis_file_to_box,
  373. params={'xcom_pull_task':'load_scirpy_report_for_vdj_b_to_db',
  374. 'xcom_pull_files_key':'output_db_files',
  375. 'analysis_tag':'scirpy_vdj_b_single_sample_report'})
  376. ## PIPELINE
  377. decide_analysis_branch >> run_scirpy_for_vdj_b
  378. run_scirpy_for_vdj_b >> load_scirpy_report_for_vdj_b_to_db
  379. run_scirpy_for_vdj_b >> load_cellranger_vdjB_matrics_to_db
  380. load_scirpy_report_for_vdj_b_to_db >> upload_scirpy_report_for_vdj_b_to_ftp
  381. load_scirpy_report_for_vdj_b_to_db >> upload_scirpy_report_for_vdj_b_to_box
  382. ## TASK
  383. run_scirpy_for_vdj_t = \
  384. PythonOperator(
  385. task_id='run_scirpy_for_vdj_t',
  386. dag=dag,
  387. queue='hpc_4G',
  388. python_callable=run_singlecell_notebook_wrapper_func,
  389. params={'cellranger_xcom_key':'cellranger_output',
  390. 'cellranger_xcom_pull_task':'run_cellranger',
  391. 'scanpy_timeout':1200,
  392. 'allow_errors':False,
  393. 'kernel_name':'python3',
  394. 'analysis_name':'scirpy',
  395. 'vdj_dir':'vdj_t',
  396. 'count_dir':'count',
  397. 'output_notebook_key':'scirpy_notebook',
  398. 'analysis_description_xcom_pull_task':'fetch_analysis_info',
  399. 'analysis_description_xcom_key':'analysis_description'})
  400. load_cellranger_vdjT_matrics_to_db = \
  401. PythonOperator(
  402. task_id='load_cellranger_vdjT_matrics_to_db',
  403. dag=dag,
  404. queue='hpc_4G',
  405. python_callable=load_cellranger_metrices_to_collection,
  406. params={'cellranger_xcom_key':'cellranger_output',
  407. 'cellranger_xcom_pull_task':'run_cellranger',
  408. 'collection_type':'CELLRANGER_MULTI',
  409. 'collection_name_task':'load_cellranger_result_to_db',
  410. 'collection_name_key':'sample_igf_id',
  411. 'metrics_summary_file':'vdj_t/metrics_summary.csv',
  412. 'attribute_prefix':'CELLRANGER_VDJT'})
  413. load_scirpy_report_for_vdj_t_to_db = \
  414. PythonOperator(
  415. task_id='load_scirpy_report_for_vdj_t_to_db',
  416. dag=dag,
  417. queue='hpc_4G',
  418. python_callable=load_analysis_files_func,
  419. params={'collection_name_task':'load_cellranger_result_to_db',
  420. 'collection_name_key':'sample_igf_id',
  421. 'file_name_task':'run_scirpy_for_vdj_t',
  422. 'file_name_key':'scirpy_notebook',
  423. 'analysis_name':'scirpy_vdj_t',
  424. 'collection_type':'SCIRPY_VDJ_T_HTML',
  425. 'collection_table':'sample',
  426. 'output_files_key':'output_db_files'})
  427. upload_scirpy_report_for_vdj_t_to_ftp = \
  428. PythonOperator(
  429. task_id='upload_scirpy_report_for_vdj_t_to_ftp',
  430. dag=dag,
  431. queue='hpc_4G',
  432. python_callable=ftp_files_upload_for_analysis,
  433. params={'xcom_pull_task':'load_scirpy_report_for_vdj_t_to_db',
  434. 'xcom_pull_files_key':'output_db_files',
  435. 'collection_name_task':'load_cellranger_result_to_db',
  436. 'collection_name_key':'sample_igf_id',
  437. 'collection_type':'FTP_SCIRPY_VDJ_T_HTML',
  438. 'collection_table':'sample',
  439. 'collect_remote_file':True})
  440. upload_scirpy_report_for_vdj_t_to_box = \
  441. PythonOperator(
  442. task_id='upload_scirpy_report_for_vdj_t_to_box',
  443. dag=dag,
  444. queue='hpc_4G',
  445. python_callable=upload_analysis_file_to_box,
  446. params={'xcom_pull_task':'load_scirpy_report_for_vdj_t_to_db',
  447. 'xcom_pull_files_key':'output_db_files',
  448. 'analysis_tag':'scirpy_vdj_t_single_sample_report'})
  449. ## PIPELINE
  450. decide_analysis_branch >> run_scirpy_for_vdj_t
  451. run_scirpy_for_vdj_t >> load_scirpy_report_for_vdj_t_to_db
  452. run_scirpy_for_vdj_t >> load_cellranger_vdjT_matrics_to_db
  453. load_scirpy_report_for_vdj_t_to_db >> upload_scirpy_report_for_vdj_t_to_ftp
  454. load_scirpy_report_for_vdj_t_to_db >> upload_scirpy_report_for_vdj_t_to_box
  455. ## TASK
  456. run_seurat_for_sc_5p = \
  457. PythonOperator(
  458. task_id='run_seurat_for_sc_5p',
  459. dag=dag,
  460. queue='hpc_4G',
  461. python_callable=run_singlecell_notebook_wrapper_func,
  462. params={'cellranger_xcom_key':'cellranger_output',
  463. 'cellranger_xcom_pull_task':'run_cellranger',
  464. 'scanpy_timeout':1200,
  465. 'allow_errors':False,
  466. 'kernel_name':'ir',
  467. 'analysis_name':'seurat',
  468. 'vdj_dir':'vdj',
  469. 'count_dir':'count',
  470. 'output_notebook_key':'seurat_notebook',
  471. 'analysis_description_xcom_pull_task':'fetch_analysis_info',
  472. 'analysis_description_xcom_key':'analysis_description'})
  473. load_seurat_report_for_sc_5p_db = \
  474. PythonOperator(
  475. task_id='load_seurat_report_for_sc_5p_db',
  476. dag=dag,
  477. queue='hpc_4G',
  478. python_callable=load_analysis_files_func,
  479. params={'collection_name_task':'load_cellranger_result_to_db',
  480. 'collection_name_key':'sample_igf_id',
  481. 'file_name_task':'run_seurat_for_sc_5p',
  482. 'file_name_key':'seurat_notebook',
  483. 'analysis_name':'seurat_5p',
  484. 'collection_type':'SEURAT_HTML',
  485. 'collection_table':'sample',
  486. 'output_files_key':'output_db_files'})
  487. upload_seurat_report_for_sc_5p_ftp = \
  488. PythonOperator(
  489. task_id='upload_seurat_report_for_sc_5p_ftp',
  490. dag=dag,
  491. queue='hpc_4G',
  492. python_callable=ftp_files_upload_for_analysis,
  493. params={'xcom_pull_task':'load_seurat_report_for_sc_5p_db',
  494. 'xcom_pull_files_key':'output_db_files',
  495. 'collection_name_task':'load_cellranger_result_to_db',
  496. 'collection_name_key':'sample_igf_id',
  497. 'collection_type':'FTP_SEURAT_HTML',
  498. 'collection_table':'sample',
  499. 'collect_remote_file':True})
  500. upload_seurat_report_for_sc_5p_to_box = \
  501. PythonOperator(
  502. task_id='upload_seurat_report_for_sc_5p_to_box',
  503. dag=dag,
  504. queue='hpc_4G',
  505. python_callable=upload_analysis_file_to_box,
  506. params={'xcom_pull_task':'load_seurat_report_for_sc_5p_db',
  507. 'xcom_pull_files_key':'output_db_files',
  508. 'analysis_tag':'seurat_single_sample_report'})
  509. ## PIPELINE
  510. decide_analysis_branch >> run_seurat_for_sc_5p
  511. run_seurat_for_sc_5p >> load_seurat_report_for_sc_5p_db
  512. load_seurat_report_for_sc_5p_db >> upload_seurat_report_for_sc_5p_ftp
  513. load_seurat_report_for_sc_5p_db >> upload_seurat_report_for_sc_5p_to_box
  514. ## TASK
  515. convert_cellranger_bam_to_cram = \
  516. PythonOperator(
  517. task_id='convert_cellranger_bam_to_cram',
  518. dag=dag,
  519. queue='hpc_4G4t',
  520. python_callable=convert_bam_to_cram_func,
  521. params={'xcom_pull_files_key':'cellranger_output',
  522. 'xcom_pull_task':'run_cellranger',
  523. 'analysis_description_xcom_pull_task':'fetch_analysis_info',
  524. 'analysis_description_xcom_key':'analysis_description',
  525. 'use_ephemeral_space':True,
  526. 'threads':4,
  527. 'analysis_name':'cellranger',
  528. 'collection_type':'ANALYSIS_CRAM',
  529. 'collection_table':'sample',
  530. 'cram_files_xcom_key':'cram_files'})
  531. ## PIPELINE
  532. decide_analysis_branch >> convert_cellranger_bam_to_cram
  533. ## TASK
  534. generate_cell_sorted_bam = \
  535. PythonOperator(
  536. task_id='generate_cell_sorted_bam',
  537. dag=dag,
  538. queue='hpc_16G8t',
  539. python_callable=generate_cell_sorted_bam_func,
  540. params={'xcom_pull_task': 'run_cellranger',
  541. 'xcom_pull_files_key': 'cellranger_output',
  542. 'cellranger_bam_path': 'count/possorted_genome_bam.bam',
  543. 'cellsorted_bam_path': 'count/cellsorted_possorted_genome_bam.bam',
  544. 'samtools_mem': '2G',
  545. 'threads': 7})
  546. run_velocyto = \
  547. PythonOperator(
  548. task_id='run_velocyto',
  549. queue='hpc_16G_long',
  550. python_callable=run_velocyto_func,
  551. params={'xcom_pull_task': 'run_cellranger',
  552. 'xcom_pull_files_key': 'cellranger_output',
  553. 'analysis_description_xcom_pull_task': 'fetch_analysis_info',
  554. 'analysis_description_xcom_key': 'analysis_description' })
  555. run_scvelo_for_sc_5p = \
  556. PythonOperator(
  557. task_id='run_scvelo_for_sc_5p',
  558. dag=dag,
  559. queue='hpc_8G8t',
  560. python_callable=run_scvelo_for_sc_5p_func,
  561. params={'xcom_pull_task': 'run_cellranger',
  562. 'xcom_pull_files_key': 'cellranger_output',
  563. 'analysis_description_xcom_pull_task': 'fetch_analysis_info',
  564. 'analysis_description_xcom_key': 'analysis_description',
  565. 'loom_file_key': 'loom_output',
  566. 'loom_file_task': 'run_velocyto',
  567. 'timeout': 1200,
  568. 'allow_errors': False,
  569. 'cpu_threads': 8,
  570. 'output_notebook_key': 'scvelo_notebook'})
  571. load_loom_file_to_rds = \
  572. PythonOperator(
  573. task_id='load_loom_file_to_rds',
  574. dag=dag,
  575. queue='hpc_4G',
  576. python_callable=load_loom_file_to_rds_func)
  577. upload_loom_file_to_irods = \
  578. DummyOperator(
  579. task_id='upload_loom_file_to_irods',
  580. dag=dag)
  581. load_scvelo_report_to_rds = \
  582. DummyOperator(
  583. task_id='load_scvelo_report_to_rds',
  584. dag=dag)
  585. upload_scvelo_report_to_ftp = \
  586. DummyOperator(
  587. task_id='upload_scvelo_report_to_ftp',
  588. dag=dag)
  589. upload_scvelo_report_to_box = \
  590. DummyOperator(
  591. task_id='upload_scvelo_report_to_box',
  592. dag=dag)
  593. ## PIPELINE
  594. convert_cellranger_bam_to_cram >> generate_cell_sorted_bam
  595. generate_cell_sorted_bam >> run_velocyto
  596. run_velocyto >> run_scvelo_for_sc_5p
  597. run_velocyto >> load_loom_file_to_rds
  598. load_loom_file_to_rds >> upload_loom_file_to_irods
  599. run_scvelo_for_sc_5p >> load_scvelo_report_to_rds
  600. load_scvelo_report_to_rds >> upload_scvelo_report_to_ftp
  601. load_scvelo_report_to_rds >> upload_scvelo_report_to_box
  602. ## TASK
  603. copy_bam_for_parallel_runs = \
  604. BranchPythonOperator(
  605. task_id='copy_bam_for_parallel_runs',
  606. dag=dag,
  607. queue='hpc_4G',
  608. python_callable=index_and_copy_bam_for_parallel_analysis,
  609. params={'xcom_pull_files_key':'cellranger_output',
  610. 'xcom_pull_task':'run_cellranger',
  611. 'list_of_tasks':[
  612. 'run_picard_alignment_summary',
  613. 'run_picard_qual_summary',
  614. 'run_picard_rna_summary',
  615. 'run_picard_gc_summary',
  616. 'run_picard_base_dist_summary',
  617. 'run_samtools_stats']})
  618. ## TASK
  619. upload_cram_to_irods = \
  620. PythonOperator(
  621. task_id='upload_cram_to_irods',
  622. dag=dag,
  623. queue='hpc_4G',
  624. python_callable=irods_files_upload_for_analysis,
  625. params={'xcom_pull_task':'convert_cellranger_bam_to_cram',
  626. 'xcom_pull_files_key':'cram_files',
  627. 'collection_name_key':'sample_igf_id',
  628. 'collection_name_task':'load_cellranger_result_to_db',
  629. 'analysis_name':'cellranger_multi'})
  630. ## PIPELINE
  631. #convert_cellranger_bam_to_cram >> copy_bam_for_parallel_runs # we need to load metrics to cram
  632. generate_cell_sorted_bam >> copy_bam_for_parallel_runs
  633. convert_cellranger_bam_to_cram >> upload_cram_to_irods
  634. ## TASK
  635. run_picard_alignment_summary = \
  636. PythonOperator(
  637. task_id='run_picard_alignment_summary',
  638. dag=dag,
  639. queue='hpc_4G',
  640. python_callable=run_picard_for_cellranger,
  641. params={'xcom_pull_files_key':'run_picard_alignment_summary',
  642. 'xcom_pull_task':'copy_bam_for_parallel_runs',
  643. 'analysis_description_xcom_pull_task':'fetch_analysis_info',
  644. 'analysis_description_xcom_key':'analysis_description',
  645. 'use_ephemeral_space':True,
  646. 'load_metrics_to_cram':True,
  647. 'java_param':'-Xmx4g',
  648. 'picard_command':'CollectAlignmentSummaryMetrics',
  649. 'picard_option':{},
  650. 'analysis_files_xcom_key':'picard_alignment_summary',
  651. 'bam_files_xcom_key':None})
  652. ## PIPELINE
  653. copy_bam_for_parallel_runs >> run_picard_alignment_summary
  654. ## TASK
  655. cleanup_picard_alignment_summary_input = \
  656. PythonOperator(
  657. task_id='cleanup_picard_alignment_summary_input',
  658. dag=dag,
  659. queue='hpc_4G',
  660. python_callable=clean_up_files,
  661. params={'xcom_pull_files_key':'run_picard_alignment_summary',
  662. 'xcom_pull_task':'copy_bam_for_parallel_runs'})
  663. ## PIPELINE
  664. run_picard_alignment_summary >> cleanup_picard_alignment_summary_input
  665. ## TASK
  666. upload_picard_alignment_summary_to_box = \
  667. PythonOperator(
  668. task_id='upload_picard_alignment_summary_to_box',
  669. dag=dag,
  670. queue='hpc_4G',
  671. python_callable=upload_analysis_file_to_box,
  672. params={'xcom_pull_task':'run_picard_alignment_summary',
  673. 'xcom_pull_files_key':'picard_alignment_summary',
  674. 'analysis_tag':'Picard-CollectAlignmentSummaryMetrics'})
  675. ## PIPELINE
  676. run_picard_alignment_summary >> upload_picard_alignment_summary_to_box
  677. ## TASK
  678. run_picard_qual_summary = \
  679. PythonOperator(
  680. task_id='run_picard_qual_summary',
  681. dag=dag,
  682. queue='hpc_4G',
  683. python_callable=run_picard_for_cellranger,
  684. params={'xcom_pull_files_key':'run_picard_qual_summary',
  685. 'xcom_pull_task':'copy_bam_for_parallel_runs',
  686. 'analysis_description_xcom_pull_task':'fetch_analysis_info',
  687. 'analysis_description_xcom_key':'analysis_description',
  688. 'use_ephemeral_space':True,
  689. 'load_metrics_to_cram':True,
  690. 'java_param':'-Xmx4g',
  691. 'picard_command':'QualityScoreDistribution',
  692. 'picard_option':{},
  693. 'analysis_files_xcom_key':'picard_qual_summary',
  694. 'bam_files_xcom_key':None})
  695. ## PIPELINE
  696. copy_bam_for_parallel_runs >> run_picard_qual_summary
  697. ## TASK
  698. cleanup_picard_qual_summary_input = \
  699. PythonOperator(
  700. task_id='cleanup_picard_qual_summary_input',
  701. dag=dag,
  702. queue='hpc_4G',
  703. python_callable=clean_up_files,
  704. params={'xcom_pull_files_key':'run_picard_qual_summary',
  705. 'xcom_pull_task':'copy_bam_for_parallel_runs'})
  706. ## PIPELINE
  707. run_picard_qual_summary >> cleanup_picard_qual_summary_input
  708. ## TASK
  709. upload_picard_qual_summary_to_box = \
  710. PythonOperator(
  711. task_id='upload_picard_qual_summary_to_box',
  712. dag=dag,
  713. queue='hpc_4G',
  714. python_callable=upload_analysis_file_to_box,
  715. params={'xcom_pull_task':'run_picard_qual_summary',
  716. 'xcom_pull_files_key':'picard_qual_summary',
  717. 'analysis_tag':'Picard-QualityScoreDistribution'})
  718. ## PIPELINE
  719. run_picard_qual_summary >> upload_picard_qual_summary_to_box
  720. ## TASK
  721. run_picard_rna_summary = \
  722. PythonOperator(
  723. task_id='run_picard_rna_summary',
  724. dag=dag,
  725. queue='hpc_8G',
  726. python_callable=run_picard_for_cellranger,
  727. params={'xcom_pull_files_key':'run_picard_rna_summary',
  728. 'xcom_pull_task':'copy_bam_for_parallel_runs',
  729. 'analysis_description_xcom_pull_task':'fetch_analysis_info',
  730. 'analysis_description_xcom_key':'analysis_description',
  731. 'use_ephemeral_space':True,
  732. 'load_metrics_to_cram':True,
  733. 'java_param':'-Xmx7g',
  734. 'picard_command':'CollectRnaSeqMetrics',
  735. 'picard_option':{},
  736. 'analysis_files_xcom_key':'picard_rna_summary',
  737. 'bam_files_xcom_key':None})
  738. ## PIPELINE
  739. copy_bam_for_parallel_runs >> run_picard_rna_summary
  740. ## TASK
  741. cleanup_picard_rna_summary_input = \
  742. PythonOperator(
  743. task_id='cleanup_picard_rna_summary_input',
  744. dag=dag,
  745. queue='hpc_4G',
  746. python_callable=clean_up_files,
  747. params={'xcom_pull_files_key':'run_picard_rna_summary',
  748. 'xcom_pull_task':'copy_bam_for_parallel_runs'})
  749. ## PIPELINE
  750. run_picard_rna_summary >> cleanup_picard_rna_summary_input
  751. ## TASK
  752. upload_picard_rna_summary_to_box = \
  753. PythonOperator(
  754. task_id='upload_picard_rna_summary_to_box',
  755. dag=dag,
  756. queue='hpc_4G',
  757. python_callable=upload_analysis_file_to_box,
  758. params={'xcom_pull_task':'run_picard_rna_summary',
  759. 'xcom_pull_files_key':'picard_rna_summary',
  760. 'analysis_tag':'Picard-CollectRnaSeqMetrics'})
  761. ## PIPELINE
  762. run_picard_rna_summary >> upload_picard_rna_summary_to_box
  763. ## TASK
  764. run_picard_gc_summary = \
  765. PythonOperator(
  766. task_id='run_picard_gc_summary',
  767. dag=dag,
  768. queue='hpc_4G',
  769. python_callable=run_picard_for_cellranger,
  770. params={'xcom_pull_files_key':'run_picard_gc_summary',
  771. 'xcom_pull_task':'copy_bam_for_parallel_runs',
  772. 'analysis_description_xcom_pull_task':'fetch_analysis_info',
  773. 'analysis_description_xcom_key':'analysis_description',
  774. 'use_ephemeral_space':True,
  775. 'load_metrics_to_cram':True,
  776. 'java_param':'-Xmx4g',
  777. 'picard_command':'CollectGcBiasMetrics',
  778. 'picard_option':{},
  779. 'analysis_files_xcom_key':'picard_gc_summary',
  780. 'bam_files_xcom_key':None})
  781. ## PIPELINE
  782. copy_bam_for_parallel_runs >> run_picard_gc_summary
  783. ## TASK
  784. cleanup_picard_gc_summary_input = \
  785. PythonOperator(
  786. task_id='cleanup_picard_gc_summary_input',
  787. dag=dag,
  788. queue='hpc_4G',
  789. python_callable=clean_up_files,
  790. params={'xcom_pull_files_key':'run_picard_gc_summary',
  791. 'xcom_pull_task':'copy_bam_for_parallel_runs'})
  792. ## PIPELINE
  793. run_picard_gc_summary >> cleanup_picard_gc_summary_input
  794. ## TASK
  795. upload_picard_gc_summary_to_box = \
  796. PythonOperator(
  797. task_id='upload_picard_gc_summary_to_box',
  798. dag=dag,
  799. queue='hpc_4G',
  800. python_callable=upload_analysis_file_to_box,
  801. params={'xcom_pull_task':'run_picard_gc_summary',
  802. 'xcom_pull_files_key':'picard_gc_summary',
  803. 'analysis_tag':'Picard-CollectGcBiasMetrics'})
  804. ## PIPELINE
  805. run_picard_gc_summary >> upload_picard_gc_summary_to_box
  806. ## TASK
  807. run_picard_base_dist_summary = \
  808. PythonOperator(
  809. task_id='run_picard_base_dist_summary',
  810. dag=dag,
  811. queue='hpc_4G',
  812. python_callable=run_picard_for_cellranger,
  813. params={'xcom_pull_files_key':'run_picard_base_dist_summary',
  814. 'xcom_pull_task':'copy_bam_for_parallel_runs',
  815. 'analysis_description_xcom_pull_task':'fetch_analysis_info',
  816. 'analysis_description_xcom_key':'analysis_description',
  817. 'use_ephemeral_space':True,
  818. 'load_metrics_to_cram':True,
  819. 'java_param':'-Xmx4g',
  820. 'picard_command':'CollectBaseDistributionByCycle',
  821. 'picard_option':{},
  822. 'analysis_files_xcom_key':'picard_base_summary',
  823. 'bam_files_xcom_key':None})
  824. ## PIPELINE
  825. copy_bam_for_parallel_runs >> run_picard_base_dist_summary
  826. ## TASK
  827. cleanup_picard_base_dist_summary_input = \
  828. PythonOperator(
  829. task_id='cleanup_picard_base_dist_summary_input',
  830. dag=dag,
  831. queue='hpc_4G',
  832. python_callable=clean_up_files,
  833. params={'xcom_pull_files_key':'run_picard_base_dist_summary',
  834. 'xcom_pull_task':'copy_bam_for_parallel_runs'})
  835. ## PIPELINE
  836. run_picard_base_dist_summary >> cleanup_picard_base_dist_summary_input
  837. ## TASK
  838. upload_picard_base_dist_summary_to_box = \
  839. PythonOperator(
  840. task_id='upload_picard_base_dist_summary_to_box',
  841. dag=dag,
  842. queue='hpc_4G',
  843. python_callable=upload_analysis_file_to_box,
  844. params={'xcom_pull_task':'run_picard_base_dist_summary',
  845. 'xcom_pull_files_key':'picard_base_summary',
  846. 'analysis_tag':'Picard-CollectBaseDistributionByCycle'})
  847. ## PIPELINE
  848. run_picard_base_dist_summary >> upload_picard_base_dist_summary_to_box
  849. ## TASK
  850. run_samtools_stats = \
  851. PythonOperator(
  852. task_id='run_samtools_stats',
  853. dag=dag,
  854. queue='hpc_4G4t',
  855. python_callable=run_samtools_for_cellranger,
  856. params={'xcom_pull_files_key':'run_samtools_stats',
  857. 'xcom_pull_task':'copy_bam_for_parallel_runs',
  858. 'analysis_description_xcom_pull_task':'fetch_analysis_info',
  859. 'analysis_description_xcom_key':'analysis_description',
  860. 'use_ephemeral_space':True,
  861. 'load_metrics_to_cram':True,
  862. 'samtools_command':'stats',
  863. 'threads':4,
  864. 'analysis_files_xcom_key':'samtools_stats'})
  865. ## PIPELINE
  866. copy_bam_for_parallel_runs >> run_samtools_stats
  867. ## TASK
  868. upload_samtools_stats_to_box = \
  869. PythonOperator(
  870. task_id='upload_samtools_stats_to_box',
  871. dag=dag,
  872. queue='hpc_4G',
  873. python_callable=upload_analysis_file_to_box,
  874. params={'xcom_pull_task':'run_samtools_stats',
  875. 'xcom_pull_files_key':'samtools_stats',
  876. 'analysis_tag':'Samtools-stats'})
  877. ## PIPELINE
  878. run_samtools_stats >> upload_samtools_stats_to_box
  879. ## TASK
  880. run_samtools_idxstats = \
  881. PythonOperator(
  882. task_id='run_samtools_idxstats',
  883. dag=dag,
  884. queue='hpc_4G4t',
  885. python_callable=run_samtools_for_cellranger,
  886. params={'xcom_pull_files_key':'run_samtools_stats',
  887. 'xcom_pull_task':'copy_bam_for_parallel_runs',
  888. 'analysis_description_xcom_pull_task':'fetch_analysis_info',
  889. 'analysis_description_xcom_key':'analysis_description',
  890. 'use_ephemeral_space':True,
  891. 'load_metrics_to_cram':True,
  892. 'samtools_command':'idxstats',
  893. 'threads':4,
  894. 'analysis_files_xcom_key':'samtools_idxstats'})
  895. ## PIPELINE
  896. run_samtools_stats >> run_samtools_idxstats
  897. ## TASK
  898. cleanup_samtools_stats_input = \
  899. PythonOperator(
  900. task_id='cleanup_samtools_stats_input',
  901. dag=dag,
  902. queue='hpc_4G',
  903. python_callable=clean_up_files,
  904. params={'xcom_pull_files_key':'run_samtools_stats',
  905. 'xcom_pull_task':'copy_bam_for_parallel_runs'})
  906. ## PIPELINE
  907. run_samtools_idxstats >> cleanup_samtools_stats_input
  908. ## TASK
  909. upload_samtools_idxstats_to_box = \
  910. PythonOperator(
  911. task_id='upload_samtools_idxstats_to_box',
  912. dag=dag,
  913. queue='hpc_4G',
  914. python_callable=upload_analysis_file_to_box,
  915. params={'xcom_pull_task':'run_samtools_idxstats',
  916. 'xcom_pull_files_key':'samtools_idxstats',
  917. 'analysis_tag':'Samtools-idxstats'})
  918. ## PIPELINE
  919. run_samtools_idxstats >> upload_samtools_idxstats_to_box
  920. ## TASK
  921. run_multiqc = \
  922. PythonOperator(
  923. task_id='run_multiqc',
  924. dag=dag,
  925. queue='hpc_4G',
  926. trigger_rule='none_failed_or_skipped',
  927. python_callable=run_multiqc_for_cellranger,
  928. params={
  929. 'list_of_analysis_xcoms_and_tasks':{
  930. 'run_cellranger':'cellranger_output',
  931. 'run_picard_alignment_summary':'picard_alignment_summary',
  932. 'run_picard_qual_summary':'picard_qual_summary',
  933. 'run_picard_rna_summary':'picard_rna_summary',
  934. 'run_picard_gc_summary':'picard_gc_summary',
  935. 'run_picard_base_dist_summary':'picard_base_summary',
  936. 'run_samtools_stats':'samtools_stats',
  937. 'run_samtools_idxstats':'samtools_idxstats'},
  938. 'analysis_description_xcom_pull_task':'fetch_analysis_info',
  939. 'analysis_description_xcom_key':'analysis_description',
  940. 'use_ephemeral_space':True,
  941. 'multiqc_html_file_xcom_key':'multiqc_html',
  942. 'multiqc_data_file_xcom_key':'multiqc_data',
  943. 'tool_order_list':['picad','samtools']})
  944. ## PIPELINE
  945. run_picard_alignment_summary >> run_multiqc
  946. run_picard_qual_summary >> run_multiqc
  947. run_picard_rna_summary >> run_multiqc
  948. run_picard_gc_summary >> run_multiqc
  949. run_picard_base_dist_summary >> run_multiqc
  950. run_samtools_idxstats >> run_multiqc
  951. ## TASK
  952. load_multiqc_html = \
  953. PythonOperator(
  954. task_id='load_multiqc_html',
  955. dag=dag,
  956. queue='hpc_4G',
  957. python_callable=load_analysis_files_func,
  958. params={'collection_name_task':'load_cellranger_result_to_db',
  959. 'collection_name_key':'sample_igf_id',
  960. 'file_name_task':'run_multiqc',
  961. 'file_name_key':'multiqc_html',
  962. 'analysis_name':'multiqc',
  963. 'collection_type':'MULTIQC_HTML',
  964. 'collection_table':'sample',
  965. 'output_files_key':'output_db_files'})
  966. ## PIPELINE
  967. run_multiqc >> load_multiqc_html
  968. ## TASK
  969. upload_multiqc_to_ftp = \
  970. PythonOperator(
  971. task_id='upload_multiqc_to_ftp',
  972. dag=dag,
  973. queue='hpc_4G',
  974. python_callable=ftp_files_upload_for_analysis,
  975. params={'xcom_pull_task':'load_multiqc_html',
  976. 'xcom_pull_files_key':'output_db_files',
  977. 'collection_name_task':'load_cellranger_result_to_db',
  978. 'collection_name_key':'sample_igf_id',
  979. 'collection_type':'FTP_MULTIQC_HTML',
  980. 'collection_table':'sample',
  981. 'collect_remote_file':True})
  982. ## PIPELINE
  983. load_multiqc_html >> upload_multiqc_to_ftp
  984. ## TASK
  985. upload_multiqc_to_box = \
  986. PythonOperator(
  987. task_id='upload_multiqc_to_box',
  988. dag=dag,
  989. queue='hpc_4G',
  990. python_callable=upload_analysis_file_to_box,
  991. params={'xcom_pull_task':'load_multiqc_html',
  992. 'xcom_pull_files_key':'output_db_files',
  993. 'analysis_tag':'multiqc_report'})
  994. ## PIPELINE
  995. load_multiqc_html >> upload_multiqc_to_box
  996. ## TASK
  997. update_analysis_and_status = \
  998. PythonOperator(
  999. task_id='update_analysis_and_status',
  1000. dag=dag,
  1001. queue='hpc_4G',
  1002. python_callable=change_pipeline_status,
  1003. trigger_rule='none_failed_or_skipped',
  1004. params={'new_status':'FINISHED',
  1005. 'no_change_status':'SEEDED'})
  1006. ## PIPELINE
  1007. upload_multiqc_to_ftp >> update_analysis_and_status
  1008. upload_scanpy_report_for_sc_5p_to_ftp >> update_analysis_and_status
  1009. upload_scanpy_report_for_sc_5p_to_box >> update_analysis_and_status
  1010. upload_cellbrowser_for_sc_5p_to_ftp >> update_analysis_and_status
  1011. #upload_scirpy_report_for_vdj_to_ftp >> update_analysis_and_status # no more ambiguous VDJ
  1012. #upload_scirpy_report_for_vdj_to_box >> update_analysis_and_status
  1013. upload_scirpy_report_for_vdj_b_to_ftp >> update_analysis_and_status
  1014. upload_scirpy_report_for_vdj_b_to_box >> update_analysis_and_status
  1015. upload_scirpy_report_for_vdj_t_to_ftp >> update_analysis_and_status
  1016. upload_scirpy_report_for_vdj_t_to_box >> update_analysis_and_status
  1017. upload_seurat_report_for_sc_5p_ftp >> update_analysis_and_status
  1018. upload_seurat_report_for_sc_5p_to_box >> update_analysis_and_status
  1019. upload_cellranger_results_to_irods >> update_analysis_and_status
  1020. upload_cellranger_report_to_ftp >> update_analysis_and_status
  1021. upload_cellranger_report_to_box >> update_analysis_and_status
  1022. upload_cram_to_irods >> update_analysis_and_status
  1023. upload_scvelo_report_to_box >> update_analysis_and_status
  1024. upload_scvelo_report_to_ftp >> update_analysis_and_status
  1025. ## TASK
  1026. update_qc_pages = \
  1027. PythonOperator(
  1028. task_id='update_qc_pages',
  1029. dag=dag,
  1030. queue='hpc_4G',
  1031. python_callable=create_and_update_qc_pages,
  1032. params={'use_ephemeral_space':True,
  1033. 'collection_type_list':[
  1034. 'FTP_MULTIQC_HTML',
  1035. 'FTP_SEURAT_HTML',
  1036. 'FTP_SCIRPY_VDJ_T_HTML',
  1037. 'FTP_SCIRPY_VDJ_B_HTML',
  1038. 'FTP_SCIRPY_VDJ_HTML',
  1039. 'FTP_CELLBROWSER',
  1040. 'FTP_SCANPY_HTML',
  1041. 'FTP_CELLRANGER_HTML']})
  1042. ## PIPELINE
  1043. update_analysis_and_status >> update_qc_pages