| 
					
				 | 
			
			
				@@ -11,6 +11,8 @@ gains on the Jetson TX2 as seen [below](#models). 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 * [Model overview](#models) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+* [Setup](#install) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 * [Download models and create frozen graphs](#download) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 * [Convert frozen graph to TensorRT engine](#convert) 
			 | 
		
	
	
		
			
				| 
					
				 | 
			
			
				@@ -51,6 +53,42 @@ data transfer back from GPU.  Time does not include preprocessing. 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 See [scripts/test_tf.py](scripts/test_tf.py), [scripts/test_trt.py](scripts/test_trt.py), and [src/test/test_trt.cu](src/test/test_trt.cu)  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 for implementation details.  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+<a name="install"></a> 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+## Setup 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+1. Flash the Jetson TX2 using JetPack 3.2.  Be sure to install 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   * CUDA 9.0 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   * OpenCV4Tegra 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   * cuDNN 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   * TensorRT 3.0 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+2. Install TensorFlow on Jetson TX2. 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   1. Download TensorFlow 1.5.0 pip wheel from [here](https://drive.google.com/open?id=1BNOaSdfd6YyitTa4DLD7j4L45-Duo2LR). 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   2. Install TensorFlow using pip 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            sudo pip install tensorflow-1.5.0rc0-cp27-cp27mu-linux_aarch64.whl 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+3. Install uff exporter on Jetson TX2. 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   1. Download TensorRT 3.0.4 for Ubuntu 16.04 and CUDA 9.0 tar package from https://developer.nvidia.com/nvidia-tensorrt-download. 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   2. Extract archive  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            tar -xzf TensorRT-3.0.4.Ubuntu-16.04.3.x86_64.cuda-9.0.cudnn7.0.tar.gz 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+   3. Install uff python package using pip  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            sudo pip install TensorRT-3.0.4/uff/uff-0.2.0-py2.py3-none-any.whl 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+4. Clone and build this project 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    ``` 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    git clone --recursive https://github.com/NVIDIA-Jetson/tf_to_trt_image_classification.git 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    cd tf_to_trt_image_classification 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    mkdir build 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    cd build 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    cmake .. 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    make  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    cd .. 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+    ``` 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 <a name="download"></a> 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 ## Download models and create frozen graphs 
			 |