|
@@ -11,6 +11,8 @@ gains on the Jetson TX2 as seen [below](#models).
|
|
|
|
|
|
* [Model overview](#models)
|
|
|
|
|
|
+* [Setup](#install)
|
|
|
+
|
|
|
* [Download models and create frozen graphs](#download)
|
|
|
|
|
|
* [Convert frozen graph to TensorRT engine](#convert)
|
|
@@ -51,6 +53,42 @@ data transfer back from GPU. Time does not include preprocessing.
|
|
|
See [scripts/test_tf.py](scripts/test_tf.py), [scripts/test_trt.py](scripts/test_trt.py), and [src/test/test_trt.cu](src/test/test_trt.cu)
|
|
|
for implementation details.
|
|
|
|
|
|
+<a name="install"></a>
|
|
|
+## Setup
|
|
|
+
|
|
|
+1. Flash the Jetson TX2 using JetPack 3.2. Be sure to install
|
|
|
+ * CUDA 9.0
|
|
|
+ * OpenCV4Tegra
|
|
|
+ * cuDNN
|
|
|
+ * TensorRT 3.0
|
|
|
+
|
|
|
+2. Install TensorFlow on Jetson TX2.
|
|
|
+ 1. Download TensorFlow 1.5.0 pip wheel from [here](https://drive.google.com/open?id=1BNOaSdfd6YyitTa4DLD7j4L45-Duo2LR).
|
|
|
+ 2. Install TensorFlow using pip
|
|
|
+
|
|
|
+ sudo pip install tensorflow-1.5.0rc0-cp27-cp27mu-linux_aarch64.whl
|
|
|
+
|
|
|
+3. Install uff exporter on Jetson TX2.
|
|
|
+ 1. Download TensorRT 3.0.4 for Ubuntu 16.04 and CUDA 9.0 tar package from https://developer.nvidia.com/nvidia-tensorrt-download.
|
|
|
+ 2. Extract archive
|
|
|
+
|
|
|
+ tar -xzf TensorRT-3.0.4.Ubuntu-16.04.3.x86_64.cuda-9.0.cudnn7.0.tar.gz
|
|
|
+
|
|
|
+ 3. Install uff python package using pip
|
|
|
+
|
|
|
+ sudo pip install TensorRT-3.0.4/uff/uff-0.2.0-py2.py3-none-any.whl
|
|
|
+
|
|
|
+4. Clone and build this project
|
|
|
+
|
|
|
+ ```
|
|
|
+ git clone --recursive https://github.com/NVIDIA-Jetson/tf_to_trt_image_classification.git
|
|
|
+ cd tf_to_trt_image_classification
|
|
|
+ mkdir build
|
|
|
+ cd build
|
|
|
+ cmake ..
|
|
|
+ make
|
|
|
+ cd ..
|
|
|
+ ```
|
|
|
|
|
|
<a name="download"></a>
|
|
|
## Download models and create frozen graphs
|