Browse Source

Update README.md

jaybdub-nv 7 years ago
parent
commit
c07ceb28fb
1 changed files with 47 additions and 29 deletions
  1. 47 29
      README.md

+ 47 - 29
README.md

@@ -4,43 +4,25 @@ TensorFlow->TensorRT Image Classification
 This contains examples, scripts and code related to image classification using TensorFlow models
 This contains examples, scripts and code related to image classification using TensorFlow models
 (from [here](https://github.com/tensorflow/models/tree/master/research/slim#Pretrained))
 (from [here](https://github.com/tensorflow/models/tree/master/research/slim#Pretrained))
 converted to TensorRT.  Converting TensorFlow models to TensorRT offers significant performance
 converted to TensorRT.  Converting TensorFlow models to TensorRT offers significant performance
-gains on the Jetson TX2 as seen [below](#default_models).
+gains on the Jetson TX2 as seen [below](#models).
 
 
-<a name="quick_start"></a>
-## Quick Start
+<a name="toc"></a>
+## Table of Contents
 
 
-1. Follow the [installation guide](INSTALL.md).
-2. Download the pretrained TensorFlow models and example images.
+* [Model overview](#models)
 
 
-    ```
-    source scripts/download_models.sh
-    source scripts/download_images.sh
-    ```
+* [Download models and create frozen graphs](#download)
 
 
-3. Convert the pretrained models to frozen graphs.
+* [Convert frozen graph to TensorRT engine](#convert)
 
 
-    ```
-    python scripts/models_to_frozen_graphs.py
-    ```
+* [Execute TensorRT engine](#execute)
 
 
-4. Convert the frozen graphs to optimized TensorRT engines.
+* [Benchmark all models](#benchmark)
 
 
-    ```
-    python scripts/frozen_graphs_to_plans.py
-    ```
+<a name="models"></a>
+## Models
 
 
-5. Execute the Inception V1 model on a single image.
-
-    ```
-    ./build/examples/classify_image/classify_image data/images/gordon_setter.jpg data/plans/inception_v1.plan data/imagenet_labels_1001.txt input InceptionV1/Logits/SpatialSqueeze inception
-    ```
-
-For more details, read through the examples [link](examples/README.md).
-
-<a name="default_models"></a>
-## Default Models
-
-The table below shows various details related to the default models ported from the TensorFlow 
+The table below shows various details related to pretrained models ported from the TensorFlow 
 slim model zoo.  
 slim model zoo.  
 
 
 | <sub>Model</sub> | <sub>Input Size</sub> | <sub>TensorRT (TX2 / Half)</sub> | <sub>TensorRT (TX2 / Float)</sub> | <sub>TensorFlow (TX2 / Float)</sub> | <sub>Input Name</sub> | <sub>Output Name</sub> | <sub>Preprocessing Fn.</sub> |
 | <sub>Model</sub> | <sub>Input Size</sub> | <sub>TensorRT (TX2 / Half)</sub> | <sub>TensorRT (TX2 / Float)</sub> | <sub>TensorFlow (TX2 / Float)</sub> | <sub>Input Name</sub> | <sub>Output Name</sub> | <sub>Preprocessing Fn.</sub> |
@@ -76,3 +58,39 @@ python scripts/test_trt.py
 
 
 The timing results will be located in **data/test_output_tf.txt** and **data/test_output_trt.txt**.  Note
 The timing results will be located in **data/test_output_tf.txt** and **data/test_output_trt.txt**.  Note
 that you must download and convert the models (as in the quick start) prior to running the benchmark scripts.
 that you must download and convert the models (as in the quick start) prior to running the benchmark scripts.
+
+<a name="download"></a>
+## Download models and create frozen graphs
+
+Run the following bash script to download all of the pretrained models. 
+
+```
+source scripts/download_models.sh
+``` 
+
+If there are any models you don't want to use, simply remove their URL and name from the model lists in [scripts/download_models.sh](scripts/download_models.sh).  
+
+Next, because the TensorFlow models are provided in checkpoint format, we must convert them to frozen graphs for optimization with TensorRT.  Run the [scripts/models_to_frozen_graphs.py](scripts/models_to_frozen_graphs.py) script.  
+
+```
+python scripts/models_to_frozen_graphs.py
+```
+
+If you removed any models in the previous step, you must add ``'exclude': true`` to the corresponding item in the ``NETS`` dictionary located in [scripts/model_meta.py](scripts/model_meta.py). 
+
+<a name="convert"></a>
+## Convert frozen graph to TensorRT engine
+
+<a name="execute"></a>
+## Execute TensorRT engine
+
+```
+./build/examples/classify_image/classify_image data/images/gordon_setter.jpg data/plans/inception_v1.plan data/imagenet_labels_1001.txt input InceptionV1/Logits/SpatialSqueeze inception
+```
+    
+<a name="benchmark"></a>
+## Benchmark all models
+
+```
+python scripts/frozen_graphs_to_plans.py
+```