# Copyright (c) 2018, NVIDIA CORPORATION. All rights reserved. # Full license terms provided in LICENSE.md file. import tensorflow as tf import sys sys.path.append("third_party/models/research/") sys.path.append("third_party/models") sys.path.append("third_party/") sys.path.append("third_party/models/research/slim/") sys.path.append("scripts") import tensorflow.contrib.slim as tf_slim import slim.nets as nets import slim.nets.vgg from model_meta import NETS, CHECKPOINT_DIR, FROZEN_GRAPHS_DIR from convert_relu6 import convertRelu6 import os if __name__ == '__main__': if not os.path.exists(CHECKPOINT_DIR): print("%s does not exist. Exiting." % CHECKPOINT_DIR) exit() if not os.path.exists(FROZEN_GRAPHS_DIR): print("%s does not exist. Creating it now." % FROZEN_GRAPHS_DIR) os.makedirs(FROZEN_GRAPHS_DIR) for net_name, net_meta in NETS.items(): if 'exclude' in net_meta.keys() and net_meta['exclude'] is True: continue print("Converting %s" % net_name) print(net_meta) tf.reset_default_graph() tf_config = tf.ConfigProto() tf_config.gpu_options.allow_growth = True tf_sess = tf.Session(config=tf_config) tf_input = tf.placeholder( tf.float32, ( None, net_meta['input_height'], net_meta['input_width'], net_meta['input_channels'] ), name=net_meta['input_name'] ) with tf_slim.arg_scope(net_meta['arg_scope']()): tf_net, tf_end_points = net_meta['model']( tf_input, is_training=False, num_classes=net_meta['num_classes'] ) tf_saver = tf.train.Saver() tf_saver.restore( save_path=net_meta['checkpoint_filename'], sess=tf_sess ) frozen_graph = tf.graph_util.convert_variables_to_constants( tf_sess, tf_sess.graph_def, output_node_names=net_meta['output_names'] ) frozen_graph = convertRelu6(frozen_graph) with open(net_meta['frozen_graph_filename'], 'wb') as f: f.write(frozen_graph.SerializeToString()) f.close() del tf_config del tf_sess del tf_input del tf_saver del frozen_graph