
NVIDIA Image Scaling SDK (version 1.0.2)
Programming Guide

Document revision: 1.0.2

Released: 14 February 2022 Copyright NVIDIA Corporation. © 2022.

Copyright NVIDIA Corporation | 14 December 2022 Page | 1

Table of Contents

Table of Contents ... 1

Abstract .. 3

Revision History .. 3

1 Introduction .. 4

2 Getting Started ... 4

2.1 System Requirements .. 4

2.2 Rendering Engine Requirements ... 4

2.3 Sample Requirements .. 5

3 NVIDIA Image Scaling Shaders Integration.. 6

3.1 Pipeline Placement ... 6

3.2 Color Space and Ranges ... 6

3.3 Supported Texture Formats ... 7

3.4 Resource States, Buffers, and Sampler .. 7

4 Adding NVIDIA Image Scaling SDK to a Project ... 7

4.1 Integration with your framework .. 7

4.1.2 Integration of NVScaler .. 9

4.1.3 Integration of NVSharpen .. 11

4.2 Sample Code ... 12

5 Best Practices .. 13

5.1 Mip-Map Bias ... 13

6 Appendix ... 13

6.1 Notices .. 13

6.1.1 Trademarks ... 13

6.1.2 License ... 13

6.2 Third-party Software .. 14

6.2.1 Dear ImGui .. 14

6.2.2 GLFW ... 14

6.2.3 DirectX Shader Compiler .. 14

6.2.4 tinyEXR .. 16

6.2.5 stb image .. 16

Copyright NVIDIA Corporation | 14 December 2022 Page | 2

6.2.6 d3dx12.h ... 16

Copyright NVIDIA Corporation | 14 December 2022 Page | 3

Abstract

The NVIDIA Image Scaling SDK Programming Guide provides details on how to integrate NVIDIA scaling

and sharpening algorithms in a game or 3D application. The Guide also provides some code snippets and

links to a full sample implementation in GitHub. In addition, it describes the best practices and a detailed

description of the algorithm.

Revision History
1.0.2 Performance optimizations

Adjusted minimum sharpness value
Fixed warnings

2 February 2022

1.0.1 Performance optimizations
fp16 coefficients support
GLSL support
DX12 and Vulkan samples

13 December 2021

1.0.0 Initial release 16 November 2021

Copyright NVIDIA Corporation | 14 December 2022 Page | 4

1 Introduction
The NVIDIA Image Scaling SDK provides a single spatial scaling and sharpening algorithm for cross-

platform support. The scaling algorithm uses a 6-tap scaling filter combined with 4 directional scaling

and adaptive sharpening filters, which creates nice smooth images and sharp edges. In addition, the SDK

provides a state-of-the-art adaptive directional sharpening algorithm for use in applications where no

scaling is required. By integrating both NVIDIA Image Scaling and NVIDIA DLSS, developers can get the

best of both worlds: NVIDIA DLSS for the best image quality, and NVIDIA Image Scaling for cross-

platform support.

The directional scaling and sharpening algorithm are combined together in NVScaler while NVSharpen

only implements the adaptive-directional-sharpening algorithm. Both algorithms are provided as

compute shaders and developers are free to integrate them in their applications. Note that if you

integrate NVScaler, you should NOT also integrate NVSharpen, as NVScaler already includes a

sharpening pass.

2 Getting Started

2.1 System Requirements

The following is needed to load and run NVScaler and NVSharpen:

- PC with Windows 10 v1709 or newer

- A DX11, DX12, or Vulkan compatible GPU

The sample app included with the SDK can be compiled for Windows or Linux.

2.2 Rendering Engine Requirements
The compute shaders can be integrated with Direct3D or Vulkan, and the application or rendering

engine must:

- Support High-level Shader Language (HLSL) model 5.0 or higher, or OpenGL Shader Language

(GLSL) 4.50.7 (version 450)

- The HLSL shader integration requires DirectX11, DirectX12, or Vulkan support

- Support a high-quality anti-aliasing technique like TAA

- Have the ability to negatively bias the LOD for textures and geometry

- On each shader call (i.e., each frame), provide:

o The raw color texture for the frame (in HDR or SDR in display-referred color-space)

o The output texture with the right dimensions

o For NVScaler: scale and sharpness values along with configuration and coefficients

o For NVSharpen: sharpness value and configuration values

To allow for future compatibility and ease ongoing research by NVIDIA, the application should consider

integrating NVIDIA Image Scaling SDK compute shaders without modifications.

Copyright NVIDIA Corporation | 14 December 2022 Page | 5

2.3 Sample Requirements

The sample included with NVIDIA Image Scaling SDK requires the following tools:

- CMake 3.12 and up

- Visual Studio 2019

- Windows SDK

- Vulkan (If the Vulkan sample is enabled)

https://cmake.org/download/
https://visualstudio.microsoft.com/downloads/
https://developer.microsoft.com/en-us/windows/downloads/windows-sdk/
https://vulkan.lunarg.com/

Copyright NVIDIA Corporation | 14 December 2022 Page | 6

3 NVIDIA Image Scaling Shaders Integration

 3.1 Pipeline Placement
The call into the NVIDIA Image Scaling shaders must occur during the post-processing phase after tone-

mapping. Applying the scaling in linear HDR in-game color-space may result in a sharpening effect that is

either not visible or too strong.

Since sharpening algorithms can enhance noisy or grainy regions, it is recommended that certain effects

such as film grain should occur after NVScaler or NVSharpen. Low-pass filters such as motion blur or

light bloom are recommended to be applied before NVScaler or NVSharpen to avoid sharpening

attenuation.

3.2 Color Space and Ranges
NVIDIA Image Scaling shaders can process color textures stored as either LDR or HDR with the following

restrictions:

1) LDR

- The range of color values must be in the [0, 1] range

- The input color texture must be in display-referred color-space after tone mapping and OETF

(gamma-correction) has been applied

2) HDR PQ

- The range of color values must be in the [0, 1] range

- The input color texture must be in display-referred color-space after tone mapping with Rec.

2020 PQ OETF applied

3) HDR Linear

- The recommended range of color values is [0, 12.5], where luminance value (as per BT. 709) of

1.0 maps to brightness value of 80nits (sRGB peak) and 12.5 maps to 1000nits

- The input color texture may have luminance values that are either linear and scene-referred or

linear and display-referred (after tone mapping)

If the input color texture sent to NIS is in HDR format set the NIS_HDR_MODE define to either

NIS_HDR_MODE_LINEAR (1) or NIS_HDR_MODE_PQ (2).

NVIDIA

IMAGE SCALING ANTI-ALIASED

RENDER

TONE

MAPPING

POST-

PROCESSING

AFTER

HUD

POST-

PROCESSING

BEFORE SPATIAL SCALING +

SHARPENING

ALGORITHM

Copyright NVIDIA Corporation | 14 December 2022 Page | 7

3.3 Supported Texture Formats
3.3.1 Input and output formats
Input and output formats are expected to be in the rages defined in previous section and should be

specified using non-integer data types such as DXGI_FORMAT_R8G8B8A8_UNORM.

3.3.2 Coefficients formats
The scaler coefficients and USM coefficients format should be specified using float4 type such as

DXGI_FORMAT_R32G32B32A32_FLOAT or DXGI_FORMAT_R16G16B16A16_FLOAT.

3.4 Resource States, Buffers, and Sampler
The game or application calling NVIDIA Image Scaling SDK shaders must ensure that the textures are in

the correct state.

- Input color textures must be in pixel shader read state

o Shader Resource View (SRV) in DirectX

o Sampled Image in Vulkan

- The output texture must be in read/write state

o Unordered Access View (UAV) in DirectX

o Storage Image in Vulkan

- The coefficients texture for NVScaler must be in read state

o Shader Resource View (SRV) in DirectX

o Sampled Image in Vulkan

- The configuration variables must be passed as a constant buffer

o Constant Buffer View (CBV) in DirectX

o Uniform buffer in Vulkan

- The sampler for texture pixel sampling must use linear filter interpolation and clamp to edge

addressing mode

4 Adding NVIDIA Image Scaling SDK to a Project

4.1 Integration with your framework
The integration instructions in this section can be applied with minimal changes to your own DX11,

DX12, or Vulkan application, using HLSL or GLSL.

4.1.1 SDK package files, configuration tools, and constant definitions
Device

• NIS_Scaler.h: shader file, contains NVScaler and NVSharpen implementations

• NIS_Main.hlsl: main HLSL shader example (can be replaced by your own)

• NIS_Main.glsl: main GLSL shader example (can be replaced by your own)

Copyright NVIDIA Corporation | 14 December 2022 Page | 8

Host Configuration

• NIS_Config.h: Coefficients in fp32 an fp16 formats and configuration declarations

Defines

• NIS_SCALER: 1 enable NvScaler, 0 performs fast NvSharpen only (no upscaling)

• NIS_HDR_MODE: 0 disabled, 1 Linear, 2 PQ

• NIS_BLOCK_WIDTH: pixels per block width. Use GetOptimalBlockWidth query for your platform

• NIS_BLOCK_HEIGHT: pixels per block height. Use GetOptimalBlockHeight query for your

platform

• NIS_THREAD_GROUP_SIZE: number of threads per group. Use GetOptimalThreadGroupSize

query for your platform

• NIS_VIEWPORT_SUPPORT: 0 disabled, 1 enable input/output viewport support

• NIS_USE_HALF_PRECISION: 0 disabled, 1 enable half precision computation

• NIS_HLSL: 0 disabled, 1 enable HLSL support

• NIS_HLSL_6_2: 0 HLSL v5, 1 HLSL v6.2 forces NIS_HSLS=1

• NIS_GLSL: 0 disabled, 1 enable GLSL support

Defines for HLSL with DXC bindings

• NIS_DXC: 0 disabled, 1 enable HLSL DXC Vulkan support

Optimal shader settings

To get optimal performance of NVScaler and NVSharpen for current and future hardware, it is

recommended that the following API is used to obtain the values for NIS_BLOCK_WIDTH,

NIS_BLOCK_HEIGHT, and NIS_THREAD_GROUP_SIZE. These values can be used to compile

permutations of NVScaler and NVSharpen offline.

enum class NISGPUArchitecture : uint32_t
{
 NVIDIA_Generic = 0,
 AMD_Generic = 1,
 Intel_Generic = 2,
 NVIDIA_Generic_fp16 = 3,
};

struct NISOptimizer
{
 bool isUpscaling;
 NISGPUArchitecture gpuArch;

 NISOptimizer(bool isUpscaling = true,
 NISGPUArchitecture gpuArch = NISGPUArchitecture::NVIDIA_Generic);
 uint32_t GetOptimalBlockWidth();
 uint32_t GetOptimalBlockHeight();
 uint32_t GetOptimalThreadGroupSize();
};

Copyright NVIDIA Corporation | 14 December 2022 Page | 9

HDR shader settings

Use the following enum values for setting NIS_HDR_MODE

enum class NISHDRMode : uint32_t
{
 None = 0,
 Linear = 1,
 PQ = 2
};

4.1.2 Integration of NVScaler
Compile the NIS_Main.hlsl shader

NIS_SCALER should be set to 1, and the isUpscaling argument should be set to true.

bool isUpscaling = true;
NISOptimizer opt(isUpscaling, NISGPUArchitecture::NVIDIA_Generic);
uint32_t blockWidth = opt.GetOptimalBlockWidth();
uint32_t blockHeight = opt.GetOptimalBlockHeight();
uint32_t threadGroupSize = opt.GetOptimalThreadGroupSize();

Defines defines;
defines.add("NIS_SCALER", isUpscaling);
defines.add("NIS_HDR_MODE", hdrMode);
defines.add("NIS_BLOCK_WIDTH", blockWidth);
defines.add("NIS_BLOCK_HEIGHT", blockHeight);
defines.add("NIS_THREAD_GROUP_SIZE", threadGroupSize);
NVScalerCS = CompileComputeShader(device, "NIS_Main.hlsl”, &defines);

Note: Compilation of the shader permutations can be performed off-line.

Create NVIDIA Image Scaling SDK configuration constant buffer

struct NISConfig
{
 float kDetectRatio;
 float kDetectThres;
 float kMinContrastRatio;
 float kRatioNorm;
 ...
};

NISConfig config;
createConstBuffer(&config, &csBuffer);

Create SRV textures for the scaler and USM phase coefficients

const int rowPitch = kFilterSize * sizeof(float); // use fp32: float, fp16: uint16_t
const int coefSize = rowPitch * kPhaseCount;
// since we are using RGBA format the texture width = kFilterSize / 4
createTexture2D(kFilterSize / 4, kPhaseCount, DXGI_FORMAT_R32G32B32A32_FLOAT,
D3D11_USAGE_DEFAULT, coef_scaler, rowPitch, coefSize, &scalerTex);
createTexture2D(kFilterSize / 4, kPhaseCount, DXGI_FORMAT_R32G32B32A32_FLOAT,
D3D11_USAGE_DEFAULT, coef_usm, rowPitch, coefSize, &usmTex);

Copyright NVIDIA Corporation | 14 December 2022 Page | 10

createSRV(scalerTex.Get(), DXGI_FORMAT_R32G32B32A32_FLOAT, &scalerSRV);
createSRV(usmTex.Get(), DXGI_FORMAT_R32G32B32A32_FLOAT, &usmSRV);

Note: It is also possible to specify an fp16 format for the coefficients such as

DXGI_FORMAT_R16G16B16A16_FLOAT. If you do so, use the fp16 coefficients coef_scaler_fp16 and

coef_usm_fp16.

Create Sampler

createLinearClampSampler(&linearClampSampler);

Update NVIDIA Image Scaling SDK configuration and constant buffer

Use the following API call to update the NVIDIA Image Scaling SDK configuration

bool NVScalerUpdateConfig(NISConfig& config,
 float sharpness,
 uint32_t inputViewportOriginX, uint32_t inputViewportOriginY,
 uint32_t inputViewportWidth, uint32_t inputViewportHeight,
 uint32_t inputTextureWidth, uint32_t inputTextureHeight,
 uint32_t outputViewportOriginX, uint32_t outputViewportOriginY,
 uint32_t outputViewportWidth, uint32_t outputViewportHeight,
 uint32_t outputTextureWidth, uint32_t outputTextureHeight,
 NISHDRMode hdrMode = NISHDRMode::None
);

NVScalerUpdateConfig returns true if the configuration was successful and false if the configuration

could not be set. The input texture sizes should be less than or equal to the output texture sizes. The

algorithm does not check for viewport inconsistencies.

When viewports are required, compile the shader with NIS_VIEWPORT_SUPPORT = 1. The use of

viewports might impact performance when the output viewport size is close to the output texture size.

To improve performance, consider adjusting the dispatch dimensions to accommodate the viewport

size.

Update the constant buffer whenever the input size, sharpness, or scale changes

NISUpdateConfig(m_config, sharpness,
 0, 0, inputWidth, inputHeight, inputWidth, inputHeight,
 0, 0, outputWidth, outputHeight, outputWidth, outputHeight,
 NISHDRMode::None);

updateConstBuffer(&config, csBuffer.Get());

A simple DX11 NVScaler dispatch example

context->CSSetShaderResources(0, 1, input); // SRV
context->CSSetShaderResource (1, 1, scalerSRV.GetAddressOf());
context->CSSetShaderResource (2, 1, usmSRV.GetAddressOf());
context->CSSetUnorderedAccessViews(0, 1, output, nullptr);
context->CSSetSamplers(0, 1, linearClampSampler.GetAddressOf());
context->CSSetConstantBuffers(0, 1, csBuffer.GetAddressOf());

Copyright NVIDIA Corporation | 14 December 2022 Page | 11

context->CSSetShader(NVScalerCS.Get(), nullptr, 0);

context->Dispatch(UINT(std::ceil(outputWidth / float(blockWidth))),
 UINT(std::ceil(outputHeight / float(blockHeight))), 1);

4.1.3 Integration of NVSharpen
If your application requires upscaling and sharpening do not use NVSharpen. Use NVScaler instead.

Since NVScaler performs both operations, upscaling and sharpening, in one step, it performs faster and

produces better image quality.

Compile the NIS_Main.hlsl shader

NIS_SCALER should be set to 0 and the optimizer isUscaling argument should be set as false.

bool isUpscaling = false;
NISOptimizer opt(isUpscaling, NISGPUArchitecture::NVIDIA_Generic);
uint32_t blockWidth = opt.GetOptimalBlockWidth();
uint32_t blockHeight = opt.GetOptimalBlockHeight();
uint32_t threadGroupSize = opt.GetOptimalThreadGroupSize();

Defines defines;
defines.add("NIS_DIRSCALER", isUpscaling);
defines.add("NIS_HDR_MODE", hdrMode);
defines.add("NIS_BLOCK_WIDTH", blockWidth);
defines.add("NIS_BLOCK_HEIGHT", blockHeight);
defines.add("NIS_THREAD_GROUP_SIZE", threadGroupSize);
NVSharpenCS = CompileComputeShader(device, "NIS_Main.hlsl”, &defines);

Note: Compilation of the shader permutations can be performed off-line.

Create NVIDIA Image Scaling SDK configuration constant buffer

struct NISConfig
{
 float kDetectRatio;
 float kDetectThres;
 float kMinContrastRatio;
 float kRatioNorm;
 ...
};

NISConfig config;
createConstBuffer(&config, &csBuffer);

Create Sampler

createLinearClampSampler(&linearClampSampler);

Update NVIDIA Image Scaling SDK configuration and constant buffer

Use the following API call to update the NVIDIA Image Scaling SDK configuration. Since NVSharpen is a

sharpening algorithm only the sharpness and input size are required. For upscaling with sharpening use

NVScaler since it performs both operations at the same time.

bool NVSharpenUpdateConfig(NISConfig& config, float sharpness,

Copyright NVIDIA Corporation | 14 December 2022 Page | 12

 uint32_t inputViewportOriginX, uint32_t inputViewportOriginY,
 uint32_t inputViewportWidth, uint32_t inputViewportHeight,
 uint32_t inputTextureWidth, uint32_t inputTextureHeight,
 uint32_t outputViewportOriginX, uint32_t outputViewportOriginY,
 NISHDRMode hdrMode = NISHDRMode::None
);

Update the constant buffer whenever the input size or sharpness changes.

NVSharpenUpdateConfig(m_config, sharpness,
 0, 0, inputWidth, inputHeight, inputWidth, inputHeight,
 0, 0, NISHDRMode::None);

updateConstBuffer(&config, csBuffer.Get());

A simple DX11 NVSharpen dispatch example

context->CSSetShaderResources(0, 1, input);
context->CSSetUnorderedAccessViews(0, 1, output, nullptr);
context->CSSetSamplers(0, 1, linearClampSampler.GetAddressOf());
context->CSSetConstantBuffers(0, 1, csBuffer.GetAddressOf());
context->CSSetShader(NVSharpenCS.Get(), nullptr, 0);

context->Dispatch(UINT(std::ceil(outputWidth / float(blockWidth))),
 UINT(std::ceil(outputHeight / float(blockHeight))), 1);

4.2 Sample Code
A sample code example is provided with the NVIDIA Image Scaling SDK. The sample apps are very simple

examples of how to integrate NVScaler or NVSharpen in your application.

To compile the samples:

$> cd samples
$> mkdir build
$> cd build
$> cmake ..

Open the solution with Visual Studio 2019. Right-click the sample project and select "Set as Startup

Project" before building the project.

For building the Vulkan sample

$> cd samples
$> mkdir build
$> cd build
$> cmake .. -DNIS_VK_SAMPLE=ON

Copyright NVIDIA Corporation | 14 December 2022 Page | 13

5 Best Practices
5.1 Mip-Map Bias
The application should set the mip-map bias (also called the texture LOD bias) to a value lower than 0.

This improves the overall image quality as textures are sampled at the display resolution rather than the

lower render resolution in use with NVScaler. NVIDIA recommends

MipLevelBias = NativeBias + log2(Render XResolution / Display XResolution) + epsilon

Note: Carefully check texture clarity when NVScaler is enabled and confirm that it matches the texture

clarity when rendering at native resolution with default AA method. Pay attention to textures with text

or other fine detail (e.g., posters on walls, number plates, newspapers, etc.)

If there is a negative bias applied during native resolution rendering, some art assets may have been

tuned for the default bias. When NVScaler is enabled, the bias may be too large or too small compared

to the default leading to poor image quality. In such a case, adjust the “epsilon” value for the

MipLevelBias calculation.

Note: Some rendering engines have a global clamp for the mipmap bias. If such a clamp exists, disable it

when NVScaler is enabled.

6 Appendix
6.1 Notices
6.1.1 Trademarks
NVIDIA and the NVIDIA logo are trademarks and/or registered trademarks of NVIDIA Corporation in the

U.S. and other countries. Other company and product names may be trademarks of the respective

companies with which they are associated.

6.1.2 License
The MIT License(MIT)
Copyright(c) 2022 NVIDIA Corporation

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files(the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and / or sell copies of
the Software, and to permit persons to whom the Software is furnished to do so,
subject to the following conditions :

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE AUTHORS OR
COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Copyright NVIDIA Corporation | 14 December 2022 Page | 14

6.2 Third-party Software
6.2.1 Dear ImGui
The MIT License (MIT)

Copyright (c) 2014-2021 Omar Cornut

Permission is hereby granted, free of charge, to any person obtaining a copy
of this software and associated documentation files (the "Software"), to deal
in the Software without restriction, including without limitation the rights
to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
copies of the Software, and to permit persons to whom the Software is
furnished to do so, subject to the following conditions:

The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

6.2.2 GLFW
Copyright (c) 2002-2006 Marcus Geelnard
Copyright (c) 2006-2019 Camilla Löwy

This software is provided 'as-is', without any express or implied warranty. In no event will
the authors be held liable for any damages arising from the use of this software.

Permission is granted to anyone to use this software for any purpose, including commercial
applications, and to alter it and redistribute it freely, subject to the following
restrictions:

The origin of this software must not be misrepresented; you must not claim that you wrote the
original software. If you use this software in a product, an acknowledgment in the product
documentation would be appreciated but is not required.

Altered source versions must be plainly marked as such, and must not be misrepresented as
being the original software.

This notice may not be removed or altered from any source distribution.

6.2.3 DirectX Shader Compiler
==
LLVM Release License
==
University of Illinois/NCSA
Open Source License

Copyright (c) 2003-2015 University of Illinois at Urbana-Champaign.
All rights reserved.

Developed by:

 LLVM Team

Copyright NVIDIA Corporation | 14 December 2022 Page | 15

 University of Illinois at Urbana-Champaign

 http://llvm.org

Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal with
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:

 * Redistributions of source code must retain the above copyright notice,
 this list of conditions and the following disclaimers.

 * Redistributions in binary form must reproduce the above copyright notice,
 this list of conditions and the following disclaimers in the
 documentation and/or other materials provided with the distribution.

 * Neither the names of the LLVM Team, University of Illinois at
 Urbana-Champaign, nor the names of its contributors may be used to
 endorse or promote products derived from this Software without specific
 prior written permission.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
CONTRIBUTORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS WITH THE
SOFTWARE.

==
Copyrights and Licenses for Third Party Software Distributed with LLVM:
==
The LLVM software contains code written by third parties. Such software will
have its own individual LICENSE.TXT file in the directory in which it appears.
This file will describe the copyrights, license, and restrictions which apply
to that code.

The disclaimer of warranty in the University of Illinois Open Source License
applies to all code in the LLVM Distribution, and nothing in any of the
other licenses gives permission to use the names of the LLVM Team or the
University of Illinois to endorse or promote products derived from this
Software.

The following pieces of software have additional or alternate copyrights,
licenses, and/or restrictions:

Program Directory
------- ---------
Autoconf llvm/autoconf
 llvm/projects/ModuleMaker/autoconf
Google Test llvm/utils/unittest/googletest
OpenBSD regex llvm/lib/Support/{reg*, COPYRIGHT.regex}
pyyaml tests llvm/test/YAMLParser/{*.data, LICENSE.TXT}
ARM contributions llvm/lib/Target/ARM/LICENSE.TXT
md5 contributions llvm/lib/Support/MD5.cpp llvm/include/llvm/Support/MD5.h
miniz llvm/lib/Miniz/miniz.c llvm/include/miniz/miniz.h
llvm/lib/Miniz/LICENSE.txt

Copyright NVIDIA Corporation | 14 December 2022 Page | 16

6.2.4 tinyEXR
License
3-clause BSD

tinyexr uses miniz, which is developed by Rich Geldreich richgel99@gmail.com, and licensed
under public domain.

tinyexr tools uses stb, which is licensed under public domain: https://github.com/nothings/stb
tinyexr uses some code from OpenEXR, which is licensed under 3-clause BSD license.

6.2.5 stb image
MIT License
Copyright (c) 2017 Sean Barrett
Permission is hereby granted, free of charge, to any person obtaining a copy of
this software and associated documentation files (the "Software"), to deal in
the Software without restriction, including without limitation the rights to
use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies
of the Software, and to permit persons to whom the Software is furnished to do
so, subject to the following conditions:
The above copyright notice and this permission notice shall be included in all
copies or substantial portions of the Software.
THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
SOFTWARE.

6.2.6 d3dx12.h
Copyright (c) Microsoft. All rights reserved.
This code is licensed under the MIT License (MIT).
THIS CODE IS PROVIDED *AS IS* WITHOUT WARRANTY OF
ANY KIND, EITHER EXPRESS OR IMPLIED, INCLUDING ANY
IMPLIED WARRANTIES OF FITNESS FOR A PARTICULAR
PURPOSE, MERCHANTABILITY, OR NON-INFRINGEMENT.

