// The MIT License(MIT) // // Copyright(c) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved. // // Permission is hereby granted, free of charge, to any person obtaining a copy of // this software and associated documentation files(the "Software"), to deal in // the Software without restriction, including without limitation the rights to // use, copy, modify, merge, publish, distribute, sublicense, and / or sell copies of // the Software, and to permit persons to whom the Software is furnished to do so, // subject to the following conditions : // // The above copyright notice and this permission notice shall be included in all // copies or substantial portions of the Software. // // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS // FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE AUTHORS OR // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER // IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN // CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. //--------------------------------------------------------------------------------- // NVIDIA Image Scaling SDK - v1.0 //--------------------------------------------------------------------------------- // The NVIDIA Image Scaling SDK provides a single spatial scaling and sharpening algorithm // for cross-platform support. The scaling algorithm uses a 6-tap scaling filter combined // with 4 directional scaling and adaptive sharpening filters, which creates nice smooth images // and sharp edges. In addition, the SDK provides a state-of-the-art adaptive directional sharpening algorithm // for use in applications where no scaling is required. // // The directional scaling and sharpening algorithm is named NVScaler while the adaptive-directional-sharpening-only // algorithm is named NVSharpen. Both algorithms are provided as compute shaders and // developers are free to integrate them in their applications. Note that if you integrate NVScaler, you // should NOT integrate NVSharpen, as NVScaler already includes a sharpening pass // // Pipeline Placement // ------------------ // The call into the NVIDIA Image Scaling shaders must occur during the post-processing phase after tone-mapping. // Applying the scaling in linear HDR in-game color-space may result in a sharpening effect that is // either not visible or too strong. Since sharpening algorithms can enhance noisy or grainy regions, it is recommended // that certain effects such as film grain should occur after NVScaler or NVSharpen. Low-pass filters such as motion blur or // light bloom are recommended to be applied before NVScaler or NVSharpen to avoid sharpening attenuation. // // Color Space and Ranges // ---------------------- // NVIDIA Image Scaling shaders can process color textures stored as either LDR or HDR with the following // restrictions: // 1) LDR // - The range of color values must be in the [0, 1] range // - The input color texture must be in display-referred color-space after tone mapping and OETF (gamma-correction) // has been applied // 2) HDR PQ // - The range of color values must be in the [0, 1] range // - The input color texture must be in display-referred color-space after tone mapping with Rec.2020 PQ OETF applied // 3) HDR Linear // - The recommended range of color values is [0, 12.5], where luminance value (as per BT. 709) of // 1.0 maps to brightness value of 80nits (sRGB peak) and 12.5 maps to 1000nits // - The input color texture may have luminance values that are either linear and scene-referred or // linear and display-referred (after tone mapping) // // If the input color texture sent to NVScaler/NVSharpen is in HDR format set NIS_HDR_MODE define to either // NIS_HDR_MODE_LINEAR (1) or NIS_HDR_MODE_PQ (2). // // Supported Texture Formats // ------------------------- // Input and output formats: // Input and output formats are expected to be in the rages defined in previous section and should be // specified using non-integer data types such as DXGI_FORMAT_R8G8B8A8_UNORM. // // Coefficients formats: // The scaler coefficients and USM coefficients format should be specified using float4 type such as // DXGI_FORMAT_R32G32B32A32_FLOAT or DXGI_FORMAT_R16G16B16A16_FLOAT. // // Resource States, Buffers, and Sampler: // The game or application calling NVIDIA Image Scaling SDK shaders must ensure that the textures are in // the correct state. // - Input color textures must be in pixel shader read state. Shader Resource View (SRV) in DirectX // - The output texture must be in read/write state. Unordered Access View (UAV) in DirectX // - The coefficients texture for NVScaler must be in read state. Shader Resource View (SRV) in DirectX // - The configuration variables must be passed as constant buffer. Constant Buffer View (CBV) in DirectX // - The sampler for texture pixel sampling. Linear clamp SamplerState in Direct // // Adding NVIDIA Image Scaling SDK to a Project // -------------------------------------------- // Include NIS_Scaler.h directly in your application or alternative use the provided NIS_Main.hlsl shader file. // Use NIS_Config.h to get the ideal shader dispatch values for your platform, to configure the algorithm constant // values (NVScalerUpdateConfig, and NVSharpenUpdateConfig), and to access the algorithm coefficients (coef_scale and coef_USM). // // Defines: // NIS_SCALER: default (1) NVScaler, (0) fast NVSharpen only, no upscaling // NIS_HDR_MODE: default(0) disabled, (1) Linear, (2) PQ // NIS_BLOCK_WIDTH: pixels per block width. Use GetOptimalBlockWidth query for your platform // NIS_BLOCK_HEIGHT: pixels per block height. Use GetOptimalBlockHeight query for your platform // NIS_THREAD_GROUP_SIZE: number of threads per group. Use GetOptimalThreadGroupSize query for your platform // NIS_USE_HALF_PRECISION: default(0) disabled, (1) enable half pression computation // NIS_HLSL_6_2: default (0) HLSL v5, (1) HLSL v6.2 // NIS_VIEWPORT_SUPPORT: default(0) disabled, (1) enable input/output viewport support // // Default NVScaler shader constants: // [NIS_BLOCK_WIDTH, NIS_BLOCK_HEIGHT, NIS_THREAD_GROUP_SIZE] = [32, 24, 256] // // Default NVSharpen shader constants: // [NIS_BLOCK_WIDTH, NIS_BLOCK_HEIGHT, NIS_THREAD_GROUP_SIZE] = [32, 32, 256] //--------------------------------------------------------------------------------- // NVScaler enable by default. Set to 0 for NVSharpen only #ifndef NIS_SCALER #define NIS_SCALER 1 #endif // HDR Modes #define NIS_HDR_MODE_NONE 0 #define NIS_HDR_MODE_LINEAR 1 #define NIS_HDR_MODE_PQ 2 #ifndef NIS_HDR_MODE #define NIS_HDR_MODE NIS_HDR_MODE_NONE #endif #define kHDRCompressionFactor 0.282842712f // Viewport support #ifndef NIS_VIEWPORT_SUPPORT #define NIS_VIEWPORT_SUPPORT 0 #endif // Half precision #ifndef NIS_USE_HALF_PRECISION #define NIS_USE_HALF_PRECISION 0 #endif #ifndef NIS_HLSL_6_2 #define NIS_HLSL_6_2 0 #endif #if NIS_USE_HALF_PRECISION #if NIS_HLSL_6_2 typedef float16_t4 NVF4; typedef float16_t NVF; #else typedef min16float4 NVF4; typedef min16float NVF; #endif // NIS_HLSL_6_2 #define NIS_SCALE_INT 1 #define NIS_SCALE_FLOAT 1.0 #else typedef float4 NVF4; typedef float NVF; #define NIS_SCALE_INT 255 #define NIS_SCALE_FLOAT 255.0 #endif // NIS_USE_HALF_PRECISION // Loop unrolling #ifndef NIS_UNROLL #define NIS_UNROLL [unroll] #endif // Texture gather #ifndef NIS_TEXTURE_GATHER #define NIS_TEXTURE_GATHER 0 #endif float getY(float3 rgba) { #if NIS_HDR_MODE == NIS_HDR_MODE_PQ return 0.262f * rgba.x + 0.678f * rgba.y + 0.0593f * rgba.z; #elif NIS_HDR_MODE == NIS_HDR_MODE_LINEAR return sqrt(0.2126f * rgba.x + 0.7152f * rgba.y + 0.0722f * rgba.z) * kHDRCompressionFactor; #else return 0.2126f * rgba.x + 0.7152f * rgba.y + 0.0722f * rgba.z; #endif } float getYLinear(float3 rgba) { return 0.2126f * rgba.x + 0.7152f * rgba.y + 0.0722f * rgba.z; }; #if NIS_SCALER float4 GetEdgeMap(float p[4][4], int i, int j) #else float4 GetEdgeMap(float p[5][5], int i, int j) #endif { const float g_0 = abs(p[0 + i][0 + j] + p[0 + i][1 + j] + p[0 + i][2 + j] - p[2 + i][0 + j] - p[2 + i][1 + j] - p[2 + i][2 + j]); const float g_45 = abs(p[1 + i][0 + j] + p[0 + i][0 + j] + p[0 + i][1 + j] - p[2 + i][1 + j] - p[2 + i][2 + j] - p[1 + i][2 + j]); const float g_90 = abs(p[0 + i][0 + j] + p[1 + i][0 + j] + p[2 + i][0 + j] - p[0 + i][2 + j] - p[1 + i][2 + j] - p[2 + i][2 + j]); const float g_135 = abs(p[1 + i][0 + j] + p[2 + i][0 + j] + p[2 + i][1 + j] - p[0 + i][1 + j] - p[0 + i][2 + j] - p[1 + i][2 + j]); const float g_0_90_max = max(g_0, g_90); const float g_0_90_min = min(g_0, g_90); const float g_45_135_max = max(g_45, g_135); const float g_45_135_min = min(g_45, g_135); float e_0_90 = 0; float e_45_135 = 0; float edge_0 = 0; float edge_45 = 0; float edge_90 = 0; float edge_135 = 0; if ((g_0_90_max + g_45_135_max) == 0) { e_0_90 = 0; e_45_135 = 0; } else { e_0_90 = g_0_90_max / (g_0_90_max + g_45_135_max); e_0_90 = min(e_0_90, 1.0f); e_45_135 = 1.0f - e_0_90; } if ((g_0_90_max > (g_0_90_min * kDetectRatio)) && (g_0_90_max > kDetectThres) && (g_0_90_max > g_45_135_min)) { if (g_0_90_max == g_0) { edge_0 = 1.0f; edge_90 = 0; } else { edge_0 = 0; edge_90 = 1.0f; } } else { edge_0 = 0; edge_90 = 0; } if ((g_45_135_max > (g_45_135_min * kDetectRatio)) && (g_45_135_max > kDetectThres) && (g_45_135_max > g_0_90_min)) { if (g_45_135_max == g_45) { edge_45 = 1.0f; edge_135 = 0; } else { edge_45 = 0; edge_135 = 1.0f; } } else { edge_45 = 0; edge_135 = 0; } float weight_0, weight_90, weight_45, weight_135; if ((edge_0 + edge_90 + edge_45 + edge_135) >= 2.0f) { if (edge_0 == 1.0f) { weight_0 = e_0_90; weight_90 = 0; } else { weight_0 = 0; weight_90 = e_0_90; } if (edge_45 == 1.0f) { weight_45 = e_45_135; weight_135 = 0; } else { weight_45 = 0; weight_135 = e_45_135; } } else if ((edge_0 + edge_90 + edge_45 + edge_135) >= 1.0f) { weight_0 = edge_0; weight_90 = edge_90; weight_45 = edge_45; weight_135 = edge_135; } else { weight_0 = 0; weight_90 = 0; weight_45 = 0; weight_135 = 0; } return float4(weight_0, weight_90, weight_45, weight_135); } #if NIS_SCALER #ifndef NIS_BLOCK_WIDTH #define NIS_BLOCK_WIDTH 32 #endif #ifndef NIS_BLOCK_HEIGHT #define NIS_BLOCK_HEIGHT 24 #endif #ifndef NIS_THREAD_GROUP_SIZE #define NIS_THREAD_GROUP_SIZE 256 #endif #define kPhaseCount 64 #define kFilterSize 8 #define kSupportSize 6 #define kPadSize kSupportSize #define kTileSize (NIS_BLOCK_WIDTH + kPadSize) * (NIS_BLOCK_HEIGHT + kPadSize) #define blockDim NIS_THREAD_GROUP_SIZE groupshared NVF shPixelsY[kTileSize]; groupshared NVF shCoefScaler[kPhaseCount][kFilterSize]; groupshared NVF shCoefUSM[kPhaseCount][kFilterSize]; groupshared NVF4 shEdgeMap[kTileSize]; void LoadFilterBanksSh(int i0, int di) { // load up filter banks to shared memory for (int i = i0; i < kFilterSize * kPhaseCount / 4 / 2; i += di) { NVF4 v0 = coef_scaler[int2(0, i)]; NVF4 v1 = coef_scaler[int2(1, i)]; shCoefScaler[i][0] = (NVF)v0.x; shCoefScaler[i][1] = (NVF)v0.y; shCoefScaler[i][2] = (NVF)v0.z; shCoefScaler[i][3] = (NVF)v0.w; shCoefScaler[i][4] = (NVF)v1.x; shCoefScaler[i][5] = (NVF)v1.y; v0 = coef_usm[int2(0, i)]; v1 = coef_usm[int2(1, i)]; shCoefUSM[i][0] = (NVF)v0.x; shCoefUSM[i][1] = (NVF)v0.y; shCoefUSM[i][2] = (NVF)v0.z; shCoefUSM[i][3] = (NVF)v0.w; shCoefUSM[i][4] = (NVF)v1.x; shCoefUSM[i][5] = (NVF)v1.y; } } float CalcLTI(float p0, float p1, float p2, float p3, float p4, float p5, int phase_index) { float y0, y1, y2, y3, y4; if (phase_index <= kPhaseCount / 2) { y0 = p0; y1 = p1; y2 = p2; y3 = p3; y4 = p4; } else { y0 = p1; y1 = p2; y2 = p3; y3 = p4; y4 = p5; } const float a_min = min(min(y0, y1), y2); const float a_max = max(max(y0, y1), y2); const float b_min = min(min(y2, y3), y4); const float b_max = max(max(y2, y3), y4); const float a_cont = a_max - a_min; const float b_cont = b_max - b_min; const float cont_ratio = max(a_cont, b_cont) / (min(a_cont, b_cont) + kEps); return (1.0f - saturate((cont_ratio - kMinContrastRatio) * kRatioNorm)) * kContrastBoost; } float4 GetInterpEdgeMap(const float4 edge[2][2], float phase_frac_x, float phase_frac_y) { float4 h0, h1, f; h0.x = lerp(edge[0][0].x, edge[0][1].x, phase_frac_x); h0.y = lerp(edge[0][0].y, edge[0][1].y, phase_frac_x); h0.z = lerp(edge[0][0].z, edge[0][1].z, phase_frac_x); h0.w = lerp(edge[0][0].w, edge[0][1].w, phase_frac_x); h1.x = lerp(edge[1][0].x, edge[1][1].x, phase_frac_x); h1.y = lerp(edge[1][0].y, edge[1][1].y, phase_frac_x); h1.z = lerp(edge[1][0].z, edge[1][1].z, phase_frac_x); h1.w = lerp(edge[1][0].w, edge[1][1].w, phase_frac_x); f.x = lerp(h0.x, h1.x, phase_frac_y); f.y = lerp(h0.y, h1.y, phase_frac_y); f.z = lerp(h0.z, h1.z, phase_frac_y); f.w = lerp(h0.w, h1.w, phase_frac_y); return f; } float EvalPoly6(const float pxl[6], int phase_int) { float y = 0.f; { NIS_UNROLL for (int i = 0; i < 6; ++i) { y += shCoefScaler[phase_int][i] * pxl[i]; } } float y_usm = 0.f; { NIS_UNROLL for (int i = 0; i < 6; ++i) { y_usm += shCoefUSM[phase_int][i] * pxl[i]; } } // let's compute a piece-wise ramp based on luma const float y_scale = 1.0f - saturate((y * (1.0f / 255) - kSharpStartY) * kSharpScaleY); // scale the ramp to sharpen as a function of luma const float y_sharpness = y_scale * kSharpStrengthScale + kSharpStrengthMin; y_usm *= y_sharpness; // scale the ramp to limit USM as a function of luma const float y_sharpness_limit = (y_scale * kSharpLimitScale + kSharpLimitMin) * y; y_usm = min(y_sharpness_limit, max(-y_sharpness_limit, y_usm)); // reduce ringing y_usm *= CalcLTI(pxl[0], pxl[1], pxl[2], pxl[3], pxl[4], pxl[5], phase_int); return y + y_usm; } float FilterNormal(const float p[6][6], int phase_x_frac_int, int phase_y_frac_int) { float h_acc = 0.0f; NIS_UNROLL for (int j = 0; j < 6; ++j) { float v_acc = 0.0f; NIS_UNROLL for (int i = 0; i < 6; ++i) { v_acc += p[i][j] * shCoefScaler[phase_y_frac_int][i]; } h_acc += v_acc * shCoefScaler[phase_x_frac_int][j]; } // let's return the sum unpacked -> we can accumulate it later return h_acc; } float4 GetDirFilters(float p[6][6], float phase_x_frac, float phase_y_frac, int phase_x_frac_int, int phase_y_frac_int) { float4 f; // 0 deg filter float interp0Deg[6]; { NIS_UNROLL for (int i = 0; i < 6; ++i) { interp0Deg[i] = lerp(p[i][2], p[i][3], phase_x_frac); } } f.x = EvalPoly6(interp0Deg, phase_y_frac_int); // 90 deg filter float interp90Deg[6]; { NIS_UNROLL for (int i = 0; i < 6; ++i) { interp90Deg[i] = lerp(p[2][i], p[3][i], phase_y_frac); } } f.y = EvalPoly6(interp90Deg, phase_x_frac_int); //45 deg filter float pphase_b45; pphase_b45 = 0.5f + 0.5f * (phase_x_frac - phase_y_frac); float temp_interp45Deg[7]; temp_interp45Deg[1] = lerp(p[2][1], p[1][2], pphase_b45); temp_interp45Deg[3] = lerp(p[3][2], p[2][3], pphase_b45); temp_interp45Deg[5] = lerp(p[4][3], p[3][4], pphase_b45); if (pphase_b45 >= 0.5f) { pphase_b45 = pphase_b45 - 0.5f; temp_interp45Deg[0] = lerp(p[1][1], p[0][2], pphase_b45); temp_interp45Deg[2] = lerp(p[2][2], p[1][3], pphase_b45); temp_interp45Deg[4] = lerp(p[3][3], p[2][4], pphase_b45); temp_interp45Deg[6] = lerp(p[4][4], p[3][5], pphase_b45); } else { pphase_b45 = 0.5f - pphase_b45; temp_interp45Deg[0] = lerp(p[1][1], p[2][0], pphase_b45); temp_interp45Deg[2] = lerp(p[2][2], p[3][1], pphase_b45); temp_interp45Deg[4] = lerp(p[3][3], p[4][2], pphase_b45); temp_interp45Deg[6] = lerp(p[4][4], p[5][3], pphase_b45); } float interp45Deg[6]; float pphase_p45 = phase_x_frac + phase_y_frac; if (pphase_p45 >= 1) { NIS_UNROLL for (int i = 0; i < 6; i++) { interp45Deg[i] = temp_interp45Deg[i + 1]; } pphase_p45 = pphase_p45 - 1; } else { NIS_UNROLL for (int i = 0; i < 6; i++) { interp45Deg[i] = temp_interp45Deg[i]; } } f.z = EvalPoly6(interp45Deg, (int)(pphase_p45 * 64)); //135 deg filter float pphase_b135; pphase_b135 = 0.5f * (phase_x_frac + phase_y_frac); float temp_interp135Deg[7]; temp_interp135Deg[1] = lerp(p[3][1], p[4][2], pphase_b135); temp_interp135Deg[3] = lerp(p[2][2], p[3][3], pphase_b135); temp_interp135Deg[5] = lerp(p[1][3], p[2][4], pphase_b135); if (pphase_b135 >= 0.5f) { pphase_b135 = pphase_b135 - 0.5f; temp_interp135Deg[0] = lerp(p[4][1], p[5][2], pphase_b135); temp_interp135Deg[2] = lerp(p[3][2], p[4][3], pphase_b135); temp_interp135Deg[4] = lerp(p[2][3], p[3][4], pphase_b135); temp_interp135Deg[6] = lerp(p[1][4], p[2][5], pphase_b135); } else { pphase_b135 = 0.5f - pphase_b135; temp_interp135Deg[0] = lerp(p[4][1], p[3][0], pphase_b135); temp_interp135Deg[2] = lerp(p[3][2], p[2][1], pphase_b135); temp_interp135Deg[4] = lerp(p[2][3], p[1][2], pphase_b135); temp_interp135Deg[6] = lerp(p[1][4], p[0][3], pphase_b135); } float interp135Deg[6]; float pphase_p135 = 1 + (phase_x_frac - phase_y_frac); if (pphase_p135 >= 1) { NIS_UNROLL for (int i = 0; i < 6; ++i) { interp135Deg[i] = temp_interp135Deg[i + 1]; } pphase_p135 = pphase_p135 - 1; } else { NIS_UNROLL for (int i = 0; i < 6; ++i) { interp135Deg[i] = temp_interp135Deg[i]; } } f.w = EvalPoly6(interp135Deg, (int)(pphase_p135 * 64)); return f; } //----------------------------------------------------------------------------------------------- // NVScaler //----------------------------------------------------------------------------------------------- void NVScaler(uint2 blockIdx, uint threadIdx) { // Figure out the range of pixels from input image that would be needed to be loaded for this thread-block const int dstBlockX = NIS_BLOCK_WIDTH * blockIdx.x; const int dstBlockY = NIS_BLOCK_HEIGHT * blockIdx.y; const int srcBlockStartX = floor((dstBlockX + 0.5f) * kScaleX - 0.5f); const int srcBlockStartY = floor((dstBlockY + 0.5f) * kScaleY - 0.5f); const int srcBlockEndX = ceil((dstBlockX + NIS_BLOCK_WIDTH + 0.5f) * kScaleX - 0.5f); const int srcBlockEndY = ceil((dstBlockY + NIS_BLOCK_HEIGHT + 0.5f) * kScaleY - 0.5f); int numPixelsX = srcBlockEndX - srcBlockStartX + kSupportSize - 1; int numPixelsY = srcBlockEndY - srcBlockStartY + kSupportSize - 1; // round-up load region to even size since we're loading in 2x2 batches numPixelsX += numPixelsX & 0x1; numPixelsY += numPixelsY & 0x1; const float invNumPixelX = 1.0f / numPixelsX; const uint numPixels = numPixelsX * numPixelsY; // fill in input luma tile in batches of 2x2 pixels // we use texture gather to get extra support necessary // to compute 2x2 edge map outputs too for (uint i = threadIdx * 2; i < numPixels / 2; i += blockDim * 2) { float py = floor(i * invNumPixelX); const float px = i - py * numPixelsX; py *= 2.0f; // 0.5 to be in the center of texel // -1.0 to sample top-left corner of 3x3 halo necessary // -kSupportSize/2 to shift by the kernel support size float kShift = 0.5f - 1.0f - (kSupportSize - 1) / 2; #if NIS_VIEWPORT_SUPPORT const float tx = (srcBlockStartX + px + kInputViewportOriginX + kShift) * kSrcNormX; const float ty = (srcBlockStartY + py + kInputViewportOriginY + kShift) * kSrcNormY; #else const float tx = (srcBlockStartX + px + kShift) * kSrcNormX; const float ty = (srcBlockStartY + py + kShift) * kSrcNormY; #endif float p[4][4]; #if NIS_TEXTURE_GATHER NIS_UNROLL for (int j = 0; j < 4; j += 2) { NIS_UNROLL for (int k = 0; k < 4; k += 2) { const float4 sr = in_texture.GatherRed(samplerLinearClamp, float2(tx + k * kSrcNormX, ty + j * kSrcNormY), int2(0, 0)); const float4 sg = in_texture.GatherGreen(samplerLinearClamp, float2(tx + k * kSrcNormX, ty + j * kSrcNormY), int2(0, 0)); const float4 sb = in_texture.GatherBlue(samplerLinearClamp, float2(tx + k * kSrcNormX, ty + j * kSrcNormY), int2(0, 0)); p[j + 0][k + 0] = getY(float3(sr.w, sg.w, sb.w)); p[j + 0][k + 1] = getY(float3(sr.z, sg.z, sb.z)); p[j + 1][k + 0] = getY(float3(sr.x, sg.x, sb.x)); p[j + 1][k + 1] = getY(float3(sr.y, sg.y, sb.y)); } } #else NIS_UNROLL for (int j = 0; j < 4; j++) { NIS_UNROLL for (int k = 0; k < 4; k++) { const float3 px = in_texture.SampleLevel(samplerLinearClamp, float2(tx + k * kSrcNormX, ty + j * kSrcNormY), 0).xyz; p[j][k] = getY(px); } } #endif const int idx = py * numPixelsX + px; shEdgeMap[idx] = (NVF4)GetEdgeMap(p, 0, 0); shEdgeMap[idx + 1] = (NVF4)GetEdgeMap(p, 0, 1); shEdgeMap[idx + numPixelsX] = (NVF4)GetEdgeMap(p, 1, 0); shEdgeMap[idx + numPixelsX + 1] = (NVF4)GetEdgeMap(p, 1, 1); // normalize luma to 255.0f and write out to shmem shPixelsY[idx] = (NVF)(p[1][1] * NIS_SCALE_FLOAT); shPixelsY[idx + 1] = (NVF)(p[1][2] * NIS_SCALE_FLOAT); shPixelsY[idx + numPixelsX] = (NVF)(p[2][1] * NIS_SCALE_FLOAT); shPixelsY[idx + numPixelsX + 1] = (NVF)(p[2][2] * NIS_SCALE_FLOAT); } LoadFilterBanksSh(threadIdx, blockDim); GroupMemoryBarrierWithGroupSync(); for (uint k = threadIdx; k < NIS_BLOCK_WIDTH * NIS_BLOCK_HEIGHT; k += blockDim) { const int2 pos = int2(k % NIS_BLOCK_WIDTH, k / NIS_BLOCK_WIDTH); const int dstX = dstBlockX + pos.x; const int dstY = dstBlockY + pos.y; const float srcX = (0.5f + dstX) * kScaleX - 0.5f; const float srcY = (0.5f + dstY) * kScaleY - 0.5f; #if NIS_VIEWPORT_SUPPORT if (srcX > kInputViewportWidth || srcY > kInputViewportHeight || dstX > kOutputViewportWidth || dstY > kOutputViewportHeight) { return; } #endif const int px = floor(srcX) - srcBlockStartX; const int py = floor(srcY) - srcBlockStartY; const int start_idx = py * numPixelsX + px; // load 6x6 support to regs float p[6][6]; { NIS_UNROLL for (int i = 0; i < 6; ++i) { NIS_UNROLL for (int j = 0; j < 6; ++j) { p[i][j] = shPixelsY[start_idx + i * numPixelsX + j]; } } } // compute discretized filter phase const float fx = srcX - floor(srcX); const float fy = srcY - floor(srcY); const int fx_int = (int)(fx * kPhaseCount); const int fy_int = (int)(fy * kPhaseCount); // get traditional scaler filter output const float pixel_n = FilterNormal(p, fx_int, fy_int); // get directional filter bank output float4 opDirYU = GetDirFilters(p, fx, fy, fx_int, fy_int); // final luma is a weighted product of directional & normal filters // generate weights for directional filters const int kShift = (kSupportSize - 2) / 2; float4 edge[2][2]; NIS_UNROLL for (int i = 0; i < 2; i++) { NIS_UNROLL for (int j = 0; j < 2; j++) { // need to shift edge map sampling since it's a 2x2 centered inside 6x6 grid edge[i][j] = shEdgeMap[start_idx + (i + kShift) * numPixelsX + (j + kShift)]; } } const float4 w = GetInterpEdgeMap(edge, fx, fy) * NIS_SCALE_INT; // final pixel is a weighted sum filter outputs const float opY = (opDirYU.x * w.x + opDirYU.y * w.y + opDirYU.z * w.z + opDirYU.w * w.w + pixel_n * (NIS_SCALE_FLOAT - w.x - w.y - w.z - w.w)) * (1.0f / NIS_SCALE_FLOAT); // do bilinear tap for chroma upscaling #if NIS_VIEWPORT_SUPPORT float4 op = in_texture.SampleLevel(samplerLinearClamp, float2((srcX + kInputViewportOriginX) * kSrcNormX, (srcY + kInputViewportOriginY) * kSrcNormY), 0); #else float4 op = in_texture.SampleLevel(samplerLinearClamp, float2((dstX + 0.5f) * kDstNormX, (dstY + 0.5f) * kDstNormY), 0); #endif #if NIS_HDR_MODE == NIS_HDR_MODE_LINEAR const float kEps = 1e-4f; const float kNorm = 1.0f / (NIS_SCALE_FLOAT * kHDRCompressionFactor); const float opYN = max(opY, 0.0f) * kNorm; const float corr = (opYN * opYN + kEps) / (max(getYLinear(float3(op.x, op.y, op.z)), 0.0f) + kEps); op.x *= corr; op.y *= corr; op.z *= corr; #else const float corr = opY * (1.0f / NIS_SCALE_FLOAT) - getY(float3(op.x, op.y, op.z)); op.x += corr; op.y += corr; op.z += corr; #endif #if NIS_VIEWPORT_SUPPORT out_texture[uint2(dstX + kOutputViewportOriginX, dstY + kOutputViewportOriginY)] = op; #else out_texture[uint2(dstX, dstY)] = op; #endif } } #else #ifndef NIS_BLOCK_WIDTH #define NIS_BLOCK_WIDTH 32 #endif #ifndef NIS_BLOCK_HEIGHT #define NIS_BLOCK_HEIGHT 32 #endif #ifndef NIS_THREAD_GROUP_SIZE #define NIS_THREAD_GROUP_SIZE 256 #endif #define kSupportSize 5 #define kNumPixelsX (NIS_BLOCK_WIDTH + kSupportSize + 1) #define kNumPixelsY (NIS_BLOCK_HEIGHT + kSupportSize + 1) #define blockDim NIS_THREAD_GROUP_SIZE groupshared float shPixelsY[kNumPixelsY][kNumPixelsX]; float CalcLTIFast(const float y[5]) { const float a_min = min(min(y[0], y[1]), y[2]); const float a_max = max(max(y[0], y[1]), y[2]); const float b_min = min(min(y[2], y[3]), y[4]); const float b_max = max(max(y[2], y[3]), y[4]); const float a_cont = a_max - a_min; const float b_cont = b_max - b_min; const float cont_ratio = max(a_cont, b_cont) / (min(a_cont, b_cont) + kEps * (1.0f / 255.0f)); return (1.0f - saturate((cont_ratio - kMinContrastRatio) * kRatioNorm)) * kContrastBoost; } float EvalUSM(const float pxl[5], const float sharpnessStrength, const float sharpnessLimit) { // USM profile float y_usm = -0.6001f * pxl[1] + 1.2002f * pxl[2] - 0.6001f * pxl[3]; // boost USM profile y_usm *= sharpnessStrength; // clamp to the limit y_usm = min(sharpnessLimit, max(-sharpnessLimit, y_usm)); // reduce ringing y_usm *= CalcLTIFast(pxl); return y_usm; } float4 GetDirUSM(const float p[5][5]) { // sharpness boost & limit are the same for all directions const float scaleY = 1.0f - saturate((p[2][2] - kSharpStartY) * kSharpScaleY); // scale the ramp to sharpen as a function of luma const float sharpnessStrength = scaleY * kSharpStrengthScale + kSharpStrengthMin; // scale the ramp to limit USM as a function of luma const float sharpnessLimit = (scaleY * kSharpLimitScale + kSharpLimitMin) * p[2][2]; float4 rval; // 0 deg filter float interp0Deg[5]; { for (int i = 0; i < 5; ++i) { interp0Deg[i] = p[i][2]; } } rval.x = EvalUSM(interp0Deg, sharpnessStrength, sharpnessLimit); // 90 deg filter float interp90Deg[5]; { for (int i = 0; i < 5; ++i) { interp90Deg[i] = p[2][i]; } } rval.y = EvalUSM(interp90Deg, sharpnessStrength, sharpnessLimit); //45 deg filter float interp45Deg[5]; interp45Deg[0] = p[1][1]; interp45Deg[1] = lerp(p[2][1], p[1][2], 0.5f); interp45Deg[2] = p[2][2]; interp45Deg[3] = lerp(p[3][2], p[2][3], 0.5f); interp45Deg[4] = p[3][3]; rval.z = EvalUSM(interp45Deg, sharpnessStrength, sharpnessLimit); //135 deg filter float interp135Deg[5]; interp135Deg[0] = p[3][1]; interp135Deg[1] = lerp(p[3][2], p[2][1], 0.5f); interp135Deg[2] = p[2][2]; interp135Deg[3] = lerp(p[2][3], p[1][2], 0.5f); interp135Deg[4] = p[1][3]; rval.w = EvalUSM(interp135Deg, sharpnessStrength, sharpnessLimit); return rval; } //----------------------------------------------------------------------------------------------- // NVSharpen //----------------------------------------------------------------------------------------------- void NVSharpen(uint2 blockIdx, uint threadIdx) { const int dstBlockX = NIS_BLOCK_WIDTH * blockIdx.x; const int dstBlockY = NIS_BLOCK_HEIGHT * blockIdx.y; // fill in input luma tile in batches of 2x2 pixels // we use texture gather to get extra support necessary // to compute 2x2 edge map outputs too const float kShift = 0.5f - kSupportSize / 2; for (uint i = threadIdx * 2; i < kNumPixelsX * kNumPixelsY / 2; i += blockDim * 2) { uint2 pos = uint2(i % kNumPixelsX, i / kNumPixelsX * 2); NIS_UNROLL for (int dy = 0; dy < 2; dy++) { NIS_UNROLL for (int dx = 0; dx < 2; dx++) { #if NIS_VIEWPORT_SUPPORT const float tx = (dstBlockX + pos.x + kInputViewportOriginX + dx + kShift) * kSrcNormX; const float ty = (dstBlockY + pos.y + kInputViewportOriginY + dy + kShift) * kSrcNormY; #else const float tx = (dstBlockX + pos.x + dx + kShift) * kSrcNormX; const float ty = (dstBlockY + pos.y + dy + kShift) * kSrcNormY; #endif const float3 px = in_texture.SampleLevel(samplerLinearClamp, float2(tx, ty), 0).xyz; shPixelsY[pos.y + dy][pos.x + dx] = getY(px); } } } GroupMemoryBarrierWithGroupSync(); for (int k = threadIdx; k < NIS_BLOCK_WIDTH * NIS_BLOCK_HEIGHT; k += blockDim) { const int2 pos = int2(k % NIS_BLOCK_WIDTH, k / NIS_BLOCK_WIDTH); // load 5x5 support to regs float p[5][5]; NIS_UNROLL for (int i = 0; i < 5; ++i) { NIS_UNROLL for (int j = 0; j < 5; ++j) { p[i][j] = shPixelsY[pos.y + i][pos.x + j]; } } // get directional filter bank output const float4 dirUSM = GetDirUSM(p); // generate weights for directional filters float4 w = GetEdgeMap(p, kSupportSize / 2 - 1, kSupportSize / 2 - 1); // final USM is a weighted sum filter outputs const float usmY = (dirUSM.x * w.x + dirUSM.y * w.y + dirUSM.z * w.z + dirUSM.w * w.w); // do bilinear tap and correct rgb texel so it produces new sharpened luma const int dstX = dstBlockX + pos.x; const int dstY = dstBlockY + pos.y; #if NIS_VIEWPORT_SUPPORT if (dstX > kOutputViewportWidth || dstY > kOutputViewportHeight) { return; } #endif #if NIS_VIEWPORT_SUPPORT float4 op = in_texture.SampleLevel(samplerLinearClamp, float2((dstX + kInputViewportOriginX) * kSrcNormX, (dstY + kInputViewportOriginY) * kSrcNormY), 0); #else float4 op = in_texture.SampleLevel(samplerLinearClamp, float2((dstX + 0.5f) * kDstNormX, (dstY + 0.5f) * kDstNormY), 0); #endif #if NIS_HDR_MODE == NIS_HDR_MODE_LINEAR const float kEps = 1e-4f * kHDRCompressionFactor * kHDRCompressionFactor; float newY = p[2][2] + usmY; newY = max(newY, 0.0f); const float oldY = p[2][2]; const float corr = (newY * newY + kEps) / (oldY * oldY + kEps); op.x *= corr; op.y *= corr; op.z *= corr; #else op.x += usmY; op.y += usmY; op.z += usmY; #endif #if NIS_VIEWPORT_SUPPORT out_texture[uint2(dstX + kOutputViewportOriginX, dstY + kOutputViewportOriginY)] = op; #else out_texture[uint2(dstX, dstY)] = op; #endif } } #endif