123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650651652653654655656657658659660661662663664665666667668669670671672673674675676677678679680681682683684685686687688689690691692693694695696697698699700701702703704705706707708709710711712713714715716717718719720721722723724725726727728729730731732733734735736737738739740741742743744745746747748749750751752753754755756757758759760761762763764765766767768769770771772773774775776777778779780781782783784785786787788789790791792793794795796797798799800801802803804805806807808809810811812813814815816817818819820821822823824825826827828829830831832833834835836837838839840841842843844845846847848849850851852853854855856857858859860861862863864865866867868869870871872873874875876877878879880881882883884885886887888889890891892893894895896897898899900901902903904905906907908909910911912913914915916917918919920921922923924925926927928929930931932933934935936937938939940941942943944945946947948949950951952953954955956957958959960961962963964965966967968969970971972973 |
- // The MIT License(MIT)
- //
- // Copyright(c) 2021 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
- //
- // Permission is hereby granted, free of charge, to any person obtaining a copy of
- // this software and associated documentation files(the "Software"), to deal in
- // the Software without restriction, including without limitation the rights to
- // use, copy, modify, merge, publish, distribute, sublicense, and / or sell copies of
- // the Software, and to permit persons to whom the Software is furnished to do so,
- // subject to the following conditions :
- //
- // The above copyright notice and this permission notice shall be included in all
- // copies or substantial portions of the Software.
- //
- // THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
- // IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS
- // FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.IN NO EVENT SHALL THE AUTHORS OR
- // COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER
- // IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
- // CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
- //---------------------------------------------------------------------------------
- // NVIDIA Image Scaling SDK - v1.0
- //---------------------------------------------------------------------------------
- // The NVIDIA Image Scaling SDK provides a single spatial scaling and sharpening algorithm
- // for cross-platform support. The scaling algorithm uses a 6-tap scaling filter combined
- // with 4 directional scaling and adaptive sharpening filters, which creates nice smooth images
- // and sharp edges. In addition, the SDK provides a state-of-the-art adaptive directional sharpening algorithm
- // for use in applications where no scaling is required.
- //
- // The directional scaling and sharpening algorithm is named NVScaler while the adaptive-directional-sharpening-only
- // algorithm is named NVSharpen. Both algorithms are provided as compute shaders and
- // developers are free to integrate them in their applications. Note that if you integrate NVScaler, you
- // should NOT integrate NVSharpen, as NVScaler already includes a sharpening pass
- //
- // Pipeline Placement
- // ------------------
- // The call into the NVIDIA Image Scaling shaders must occur during the post-processing phase after tone-mapping.
- // Applying the scaling in linear HDR in-game color-space may result in a sharpening effect that is
- // either not visible or too strong. Since sharpening algorithms can enhance noisy or grainy regions, it is recommended
- // that certain effects such as film grain should occur after NVScaler or NVSharpen. Low-pass filters such as motion blur or
- // light bloom are recommended to be applied before NVScaler or NVSharpen to avoid sharpening attenuation.
- //
- // Color Space and Ranges
- // ----------------------
- // NVIDIA Image Scaling shaders can process color textures stored as either LDR or HDR with the following
- // restrictions:
- // 1) LDR
- // - The range of color values must be in the [0, 1] range
- // - The input color texture must be in display-referred color-space after tone mapping and OETF (gamma-correction)
- // has been applied
- // 2) HDR PQ
- // - The range of color values must be in the [0, 1] range
- // - The input color texture must be in display-referred color-space after tone mapping with Rec.2020 PQ OETF applied
- // 3) HDR Linear
- // - The recommended range of color values is [0, 12.5], where luminance value (as per BT. 709) of
- // 1.0 maps to brightness value of 80nits (sRGB peak) and 12.5 maps to 1000nits
- // - The input color texture may have luminance values that are either linear and scene-referred or
- // linear and display-referred (after tone mapping)
- //
- // If the input color texture sent to NVScaler/NVSharpen is in HDR format set NIS_HDR_MODE define to either
- // NIS_HDR_MODE_LINEAR (1) or NIS_HDR_MODE_PQ (2).
- //
- // Supported Texture Formats
- // -------------------------
- // Input and output formats:
- // Input and output formats are expected to be in the rages defined in previous section and should be
- // specified using non-integer data types such as DXGI_FORMAT_R8G8B8A8_UNORM.
- //
- // Coefficients formats:
- // The scaler coefficients and USM coefficients format should be specified using float4 type such as
- // DXGI_FORMAT_R32G32B32A32_FLOAT or DXGI_FORMAT_R16G16B16A16_FLOAT.
- //
- // Resource States, Buffers, and Sampler:
- // The game or application calling NVIDIA Image Scaling SDK shaders must ensure that the textures are in
- // the correct state.
- // - Input color textures must be in pixel shader read state. Shader Resource View (SRV) in DirectX
- // - The output texture must be in read/write state. Unordered Access View (UAV) in DirectX
- // - The coefficients texture for NVScaler must be in read state. Shader Resource View (SRV) in DirectX
- // - The configuration variables must be passed as constant buffer. Constant Buffer View (CBV) in DirectX
- // - The sampler for texture pixel sampling. Linear clamp SamplerState in Direct
- //
- // Adding NVIDIA Image Scaling SDK to a Project
- // --------------------------------------------
- // Include NIS_Scaler.h directly in your application or alternative use the provided NIS_Main.hlsl shader file.
- // Use NIS_Config.h to get the ideal shader dispatch values for your platform, to configure the algorithm constant
- // values (NVScalerUpdateConfig, and NVSharpenUpdateConfig), and to access the algorithm coefficients (coef_scale and coef_USM).
- //
- // Defines:
- // NIS_SCALER: default (1) NVScaler, (0) fast NVSharpen only, no upscaling
- // NIS_HDR_MODE: default(0) disabled, (1) Linear, (2) PQ
- // NIS_BLOCK_WIDTH: pixels per block width. Use GetOptimalBlockWidth query for your platform
- // NIS_BLOCK_HEIGHT: pixels per block height. Use GetOptimalBlockHeight query for your platform
- // NIS_THREAD_GROUP_SIZE: number of threads per group. Use GetOptimalThreadGroupSize query for your platform
- // NIS_USE_HALF_PRECISION: default(0) disabled, (1) enable half pression computation
- // NIS_HLSL_6_2: default (0) HLSL v5, (1) HLSL v6.2
- // NIS_VIEWPORT_SUPPORT: default(0) disabled, (1) enable input/output viewport support
- //
- // Default NVScaler shader constants:
- // [NIS_BLOCK_WIDTH, NIS_BLOCK_HEIGHT, NIS_THREAD_GROUP_SIZE] = [32, 24, 256]
- //
- // Default NVSharpen shader constants:
- // [NIS_BLOCK_WIDTH, NIS_BLOCK_HEIGHT, NIS_THREAD_GROUP_SIZE] = [32, 32, 256]
- //---------------------------------------------------------------------------------
- // NVScaler enable by default. Set to 0 for NVSharpen only
- #ifndef NIS_SCALER
- #define NIS_SCALER 1
- #endif
- // HDR Modes
- #define NIS_HDR_MODE_NONE 0
- #define NIS_HDR_MODE_LINEAR 1
- #define NIS_HDR_MODE_PQ 2
- #ifndef NIS_HDR_MODE
- #define NIS_HDR_MODE NIS_HDR_MODE_NONE
- #endif
- #define kHDRCompressionFactor 0.282842712f
- // Viewport support
- #ifndef NIS_VIEWPORT_SUPPORT
- #define NIS_VIEWPORT_SUPPORT 0
- #endif
- // Half precision
- #ifndef NIS_USE_HALF_PRECISION
- #define NIS_USE_HALF_PRECISION 0
- #endif
- #ifndef NIS_HLSL_6_2
- #define NIS_HLSL_6_2 0
- #endif
- #if NIS_USE_HALF_PRECISION
- #if NIS_HLSL_6_2
- typedef float16_t4 NVF4;
- typedef float16_t NVF;
- #else
- typedef min16float4 NVF4;
- typedef min16float NVF;
- #endif // NIS_HLSL_6_2
- #define NIS_SCALE_INT 1
- #define NIS_SCALE_FLOAT 1.0
- #else
- typedef float4 NVF4;
- typedef float NVF;
- #define NIS_SCALE_INT 255
- #define NIS_SCALE_FLOAT 255.0
- #endif // NIS_USE_HALF_PRECISION
- // Loop unrolling
- #ifndef NIS_UNROLL
- #define NIS_UNROLL [unroll]
- #endif
- // Texture gather
- #ifndef NIS_TEXTURE_GATHER
- #define NIS_TEXTURE_GATHER 0
- #endif
- float getY(float3 rgba)
- {
- #if NIS_HDR_MODE == NIS_HDR_MODE_PQ
- return 0.262f * rgba.x + 0.678f * rgba.y + 0.0593f * rgba.z;
- #elif NIS_HDR_MODE == NIS_HDR_MODE_LINEAR
- return sqrt(0.2126f * rgba.x + 0.7152f * rgba.y + 0.0722f * rgba.z) * kHDRCompressionFactor;
- #else
- return 0.2126f * rgba.x + 0.7152f * rgba.y + 0.0722f * rgba.z;
- #endif
- }
- float getYLinear(float3 rgba)
- {
- return 0.2126f * rgba.x + 0.7152f * rgba.y + 0.0722f * rgba.z;
- };
- #if NIS_SCALER
- float4 GetEdgeMap(float p[4][4], int i, int j)
- #else
- float4 GetEdgeMap(float p[5][5], int i, int j)
- #endif
- {
- const float g_0 = abs(p[0 + i][0 + j] + p[0 + i][1 + j] + p[0 + i][2 + j] - p[2 + i][0 + j] - p[2 + i][1 + j] - p[2 + i][2 + j]);
- const float g_45 = abs(p[1 + i][0 + j] + p[0 + i][0 + j] + p[0 + i][1 + j] - p[2 + i][1 + j] - p[2 + i][2 + j] - p[1 + i][2 + j]);
- const float g_90 = abs(p[0 + i][0 + j] + p[1 + i][0 + j] + p[2 + i][0 + j] - p[0 + i][2 + j] - p[1 + i][2 + j] - p[2 + i][2 + j]);
- const float g_135 = abs(p[1 + i][0 + j] + p[2 + i][0 + j] + p[2 + i][1 + j] - p[0 + i][1 + j] - p[0 + i][2 + j] - p[1 + i][2 + j]);
- const float g_0_90_max = max(g_0, g_90);
- const float g_0_90_min = min(g_0, g_90);
- const float g_45_135_max = max(g_45, g_135);
- const float g_45_135_min = min(g_45, g_135);
- float e_0_90 = 0;
- float e_45_135 = 0;
- float edge_0 = 0;
- float edge_45 = 0;
- float edge_90 = 0;
- float edge_135 = 0;
- if ((g_0_90_max + g_45_135_max) == 0)
- {
- e_0_90 = 0;
- e_45_135 = 0;
- }
- else
- {
- e_0_90 = g_0_90_max / (g_0_90_max + g_45_135_max);
- e_0_90 = min(e_0_90, 1.0f);
- e_45_135 = 1.0f - e_0_90;
- }
- if ((g_0_90_max > (g_0_90_min * kDetectRatio)) && (g_0_90_max > kDetectThres) && (g_0_90_max > g_45_135_min))
- {
- if (g_0_90_max == g_0)
- {
- edge_0 = 1.0f;
- edge_90 = 0;
- }
- else
- {
- edge_0 = 0;
- edge_90 = 1.0f;
- }
- }
- else
- {
- edge_0 = 0;
- edge_90 = 0;
- }
- if ((g_45_135_max > (g_45_135_min * kDetectRatio)) && (g_45_135_max > kDetectThres) &&
- (g_45_135_max > g_0_90_min))
- {
- if (g_45_135_max == g_45)
- {
- edge_45 = 1.0f;
- edge_135 = 0;
- }
- else
- {
- edge_45 = 0;
- edge_135 = 1.0f;
- }
- }
- else
- {
- edge_45 = 0;
- edge_135 = 0;
- }
- float weight_0, weight_90, weight_45, weight_135;
- if ((edge_0 + edge_90 + edge_45 + edge_135) >= 2.0f)
- {
- if (edge_0 == 1.0f)
- {
- weight_0 = e_0_90;
- weight_90 = 0;
- }
- else
- {
- weight_0 = 0;
- weight_90 = e_0_90;
- }
- if (edge_45 == 1.0f)
- {
- weight_45 = e_45_135;
- weight_135 = 0;
- }
- else
- {
- weight_45 = 0;
- weight_135 = e_45_135;
- }
- }
- else if ((edge_0 + edge_90 + edge_45 + edge_135) >= 1.0f)
- {
- weight_0 = edge_0;
- weight_90 = edge_90;
- weight_45 = edge_45;
- weight_135 = edge_135;
- }
- else
- {
- weight_0 = 0;
- weight_90 = 0;
- weight_45 = 0;
- weight_135 = 0;
- }
- return float4(weight_0, weight_90, weight_45, weight_135);
- }
- #if NIS_SCALER
- #ifndef NIS_BLOCK_WIDTH
- #define NIS_BLOCK_WIDTH 32
- #endif
- #ifndef NIS_BLOCK_HEIGHT
- #define NIS_BLOCK_HEIGHT 24
- #endif
- #ifndef NIS_THREAD_GROUP_SIZE
- #define NIS_THREAD_GROUP_SIZE 256
- #endif
- #define kPhaseCount 64
- #define kFilterSize 8
- #define kSupportSize 6
- #define kPadSize kSupportSize
- #define kTileSize (NIS_BLOCK_WIDTH + kPadSize) * (NIS_BLOCK_HEIGHT + kPadSize)
- #define blockDim NIS_THREAD_GROUP_SIZE
- groupshared NVF shPixelsY[kTileSize];
- groupshared NVF shCoefScaler[kPhaseCount][kFilterSize];
- groupshared NVF shCoefUSM[kPhaseCount][kFilterSize];
- groupshared NVF4 shEdgeMap[kTileSize];
- void LoadFilterBanksSh(int i0, int di)
- {
- // load up filter banks to shared memory
- for (int i = i0; i < kFilterSize * kPhaseCount / 4 / 2; i += di)
- {
- NVF4 v0 = coef_scaler[int2(0, i)];
- NVF4 v1 = coef_scaler[int2(1, i)];
- shCoefScaler[i][0] = (NVF)v0.x;
- shCoefScaler[i][1] = (NVF)v0.y;
- shCoefScaler[i][2] = (NVF)v0.z;
- shCoefScaler[i][3] = (NVF)v0.w;
- shCoefScaler[i][4] = (NVF)v1.x;
- shCoefScaler[i][5] = (NVF)v1.y;
- v0 = coef_usm[int2(0, i)];
- v1 = coef_usm[int2(1, i)];
- shCoefUSM[i][0] = (NVF)v0.x;
- shCoefUSM[i][1] = (NVF)v0.y;
- shCoefUSM[i][2] = (NVF)v0.z;
- shCoefUSM[i][3] = (NVF)v0.w;
- shCoefUSM[i][4] = (NVF)v1.x;
- shCoefUSM[i][5] = (NVF)v1.y;
- }
- }
- float CalcLTI(float p0, float p1, float p2, float p3, float p4, float p5, int phase_index)
- {
- float y0, y1, y2, y3, y4;
- if (phase_index <= kPhaseCount / 2)
- {
- y0 = p0;
- y1 = p1;
- y2 = p2;
- y3 = p3;
- y4 = p4;
- }
- else
- {
- y0 = p1;
- y1 = p2;
- y2 = p3;
- y3 = p4;
- y4 = p5;
- }
- const float a_min = min(min(y0, y1), y2);
- const float a_max = max(max(y0, y1), y2);
- const float b_min = min(min(y2, y3), y4);
- const float b_max = max(max(y2, y3), y4);
- const float a_cont = a_max - a_min;
- const float b_cont = b_max - b_min;
- const float cont_ratio = max(a_cont, b_cont) / (min(a_cont, b_cont) + kEps);
- return (1.0f - saturate((cont_ratio - kMinContrastRatio) * kRatioNorm)) * kContrastBoost;
- }
- float4 GetInterpEdgeMap(const float4 edge[2][2], float phase_frac_x, float phase_frac_y)
- {
- float4 h0, h1, f;
- h0.x = lerp(edge[0][0].x, edge[0][1].x, phase_frac_x);
- h0.y = lerp(edge[0][0].y, edge[0][1].y, phase_frac_x);
- h0.z = lerp(edge[0][0].z, edge[0][1].z, phase_frac_x);
- h0.w = lerp(edge[0][0].w, edge[0][1].w, phase_frac_x);
- h1.x = lerp(edge[1][0].x, edge[1][1].x, phase_frac_x);
- h1.y = lerp(edge[1][0].y, edge[1][1].y, phase_frac_x);
- h1.z = lerp(edge[1][0].z, edge[1][1].z, phase_frac_x);
- h1.w = lerp(edge[1][0].w, edge[1][1].w, phase_frac_x);
- f.x = lerp(h0.x, h1.x, phase_frac_y);
- f.y = lerp(h0.y, h1.y, phase_frac_y);
- f.z = lerp(h0.z, h1.z, phase_frac_y);
- f.w = lerp(h0.w, h1.w, phase_frac_y);
- return f;
- }
- float EvalPoly6(const float pxl[6], int phase_int)
- {
- float y = 0.f;
- {
- NIS_UNROLL
- for (int i = 0; i < 6; ++i)
- {
- y += shCoefScaler[phase_int][i] * pxl[i];
- }
- }
- float y_usm = 0.f;
- {
- NIS_UNROLL
- for (int i = 0; i < 6; ++i)
- {
- y_usm += shCoefUSM[phase_int][i] * pxl[i];
- }
- }
- // let's compute a piece-wise ramp based on luma
- const float y_scale = 1.0f - saturate((y * (1.0f / 255) - kSharpStartY) * kSharpScaleY);
- // scale the ramp to sharpen as a function of luma
- const float y_sharpness = y_scale * kSharpStrengthScale + kSharpStrengthMin;
- y_usm *= y_sharpness;
- // scale the ramp to limit USM as a function of luma
- const float y_sharpness_limit = (y_scale * kSharpLimitScale + kSharpLimitMin) * y;
- y_usm = min(y_sharpness_limit, max(-y_sharpness_limit, y_usm));
- // reduce ringing
- y_usm *= CalcLTI(pxl[0], pxl[1], pxl[2], pxl[3], pxl[4], pxl[5], phase_int);
- return y + y_usm;
- }
- float FilterNormal(const float p[6][6], int phase_x_frac_int, int phase_y_frac_int)
- {
- float h_acc = 0.0f;
- NIS_UNROLL
- for (int j = 0; j < 6; ++j)
- {
- float v_acc = 0.0f;
- NIS_UNROLL
- for (int i = 0; i < 6; ++i)
- {
- v_acc += p[i][j] * shCoefScaler[phase_y_frac_int][i];
- }
- h_acc += v_acc * shCoefScaler[phase_x_frac_int][j];
- }
- // let's return the sum unpacked -> we can accumulate it later
- return h_acc;
- }
- float4 GetDirFilters(float p[6][6], float phase_x_frac, float phase_y_frac, int phase_x_frac_int, int phase_y_frac_int)
- {
- float4 f;
- // 0 deg filter
- float interp0Deg[6];
- {
- NIS_UNROLL
- for (int i = 0; i < 6; ++i)
- {
- interp0Deg[i] = lerp(p[i][2], p[i][3], phase_x_frac);
- }
- }
- f.x = EvalPoly6(interp0Deg, phase_y_frac_int);
- // 90 deg filter
- float interp90Deg[6];
- {
- NIS_UNROLL
- for (int i = 0; i < 6; ++i)
- {
- interp90Deg[i] = lerp(p[2][i], p[3][i], phase_y_frac);
- }
- }
- f.y = EvalPoly6(interp90Deg, phase_x_frac_int);
- //45 deg filter
- float pphase_b45;
- pphase_b45 = 0.5f + 0.5f * (phase_x_frac - phase_y_frac);
- float temp_interp45Deg[7];
- temp_interp45Deg[1] = lerp(p[2][1], p[1][2], pphase_b45);
- temp_interp45Deg[3] = lerp(p[3][2], p[2][3], pphase_b45);
- temp_interp45Deg[5] = lerp(p[4][3], p[3][4], pphase_b45);
- if (pphase_b45 >= 0.5f)
- {
- pphase_b45 = pphase_b45 - 0.5f;
- temp_interp45Deg[0] = lerp(p[1][1], p[0][2], pphase_b45);
- temp_interp45Deg[2] = lerp(p[2][2], p[1][3], pphase_b45);
- temp_interp45Deg[4] = lerp(p[3][3], p[2][4], pphase_b45);
- temp_interp45Deg[6] = lerp(p[4][4], p[3][5], pphase_b45);
- }
- else
- {
- pphase_b45 = 0.5f - pphase_b45;
- temp_interp45Deg[0] = lerp(p[1][1], p[2][0], pphase_b45);
- temp_interp45Deg[2] = lerp(p[2][2], p[3][1], pphase_b45);
- temp_interp45Deg[4] = lerp(p[3][3], p[4][2], pphase_b45);
- temp_interp45Deg[6] = lerp(p[4][4], p[5][3], pphase_b45);
- }
- float interp45Deg[6];
- float pphase_p45 = phase_x_frac + phase_y_frac;
- if (pphase_p45 >= 1)
- {
- NIS_UNROLL
- for (int i = 0; i < 6; i++)
- {
- interp45Deg[i] = temp_interp45Deg[i + 1];
- }
- pphase_p45 = pphase_p45 - 1;
- }
- else
- {
- NIS_UNROLL
- for (int i = 0; i < 6; i++)
- {
- interp45Deg[i] = temp_interp45Deg[i];
- }
- }
- f.z = EvalPoly6(interp45Deg, (int)(pphase_p45 * 64));
- //135 deg filter
- float pphase_b135;
- pphase_b135 = 0.5f * (phase_x_frac + phase_y_frac);
- float temp_interp135Deg[7];
- temp_interp135Deg[1] = lerp(p[3][1], p[4][2], pphase_b135);
- temp_interp135Deg[3] = lerp(p[2][2], p[3][3], pphase_b135);
- temp_interp135Deg[5] = lerp(p[1][3], p[2][4], pphase_b135);
- if (pphase_b135 >= 0.5f)
- {
- pphase_b135 = pphase_b135 - 0.5f;
- temp_interp135Deg[0] = lerp(p[4][1], p[5][2], pphase_b135);
- temp_interp135Deg[2] = lerp(p[3][2], p[4][3], pphase_b135);
- temp_interp135Deg[4] = lerp(p[2][3], p[3][4], pphase_b135);
- temp_interp135Deg[6] = lerp(p[1][4], p[2][5], pphase_b135);
- }
- else
- {
- pphase_b135 = 0.5f - pphase_b135;
- temp_interp135Deg[0] = lerp(p[4][1], p[3][0], pphase_b135);
- temp_interp135Deg[2] = lerp(p[3][2], p[2][1], pphase_b135);
- temp_interp135Deg[4] = lerp(p[2][3], p[1][2], pphase_b135);
- temp_interp135Deg[6] = lerp(p[1][4], p[0][3], pphase_b135);
- }
- float interp135Deg[6];
- float pphase_p135 = 1 + (phase_x_frac - phase_y_frac);
- if (pphase_p135 >= 1)
- {
- NIS_UNROLL
- for (int i = 0; i < 6; ++i)
- {
- interp135Deg[i] = temp_interp135Deg[i + 1];
- }
- pphase_p135 = pphase_p135 - 1;
- }
- else
- {
- NIS_UNROLL
- for (int i = 0; i < 6; ++i)
- {
- interp135Deg[i] = temp_interp135Deg[i];
- }
- }
- f.w = EvalPoly6(interp135Deg, (int)(pphase_p135 * 64));
- return f;
- }
- //-----------------------------------------------------------------------------------------------
- // NVScaler
- //-----------------------------------------------------------------------------------------------
- void NVScaler(uint2 blockIdx, uint threadIdx)
- {
- // Figure out the range of pixels from input image that would be needed to be loaded for this thread-block
- const int dstBlockX = NIS_BLOCK_WIDTH * blockIdx.x;
- const int dstBlockY = NIS_BLOCK_HEIGHT * blockIdx.y;
- const int srcBlockStartX = floor((dstBlockX + 0.5f) * kScaleX - 0.5f);
- const int srcBlockStartY = floor((dstBlockY + 0.5f) * kScaleY - 0.5f);
- const int srcBlockEndX = ceil((dstBlockX + NIS_BLOCK_WIDTH + 0.5f) * kScaleX - 0.5f);
- const int srcBlockEndY = ceil((dstBlockY + NIS_BLOCK_HEIGHT + 0.5f) * kScaleY - 0.5f);
-
- int numPixelsX = srcBlockEndX - srcBlockStartX + kSupportSize - 1;
- int numPixelsY = srcBlockEndY - srcBlockStartY + kSupportSize - 1;
- // round-up load region to even size since we're loading in 2x2 batches
- numPixelsX += numPixelsX & 0x1;
- numPixelsY += numPixelsY & 0x1;
- const float invNumPixelX = 1.0f / numPixelsX;
- const uint numPixels = numPixelsX * numPixelsY;
- // fill in input luma tile in batches of 2x2 pixels
- // we use texture gather to get extra support necessary
- // to compute 2x2 edge map outputs too
- for (uint i = threadIdx * 2; i < numPixels / 2; i += blockDim * 2)
- {
- float py = floor(i * invNumPixelX);
- const float px = i - py * numPixelsX;
- py *= 2.0f;
- // 0.5 to be in the center of texel
- // -1.0 to sample top-left corner of 3x3 halo necessary
- // -kSupportSize/2 to shift by the kernel support size
- float kShift = 0.5f - 1.0f - (kSupportSize - 1) / 2;
- #if NIS_VIEWPORT_SUPPORT
- const float tx = (srcBlockStartX + px + kInputViewportOriginX + kShift) * kSrcNormX;
- const float ty = (srcBlockStartY + py + kInputViewportOriginY + kShift) * kSrcNormY;
- #else
- const float tx = (srcBlockStartX + px + kShift) * kSrcNormX;
- const float ty = (srcBlockStartY + py + kShift) * kSrcNormY;
- #endif
- float p[4][4];
- #if NIS_TEXTURE_GATHER
- NIS_UNROLL for (int j = 0; j < 4; j += 2)
- {
- NIS_UNROLL for (int k = 0; k < 4; k += 2)
- {
- const float4 sr = in_texture.GatherRed(samplerLinearClamp, float2(tx + k * kSrcNormX, ty + j * kSrcNormY), int2(0, 0));
- const float4 sg = in_texture.GatherGreen(samplerLinearClamp, float2(tx + k * kSrcNormX, ty + j * kSrcNormY), int2(0, 0));
- const float4 sb = in_texture.GatherBlue(samplerLinearClamp, float2(tx + k * kSrcNormX, ty + j * kSrcNormY), int2(0, 0));
- p[j + 0][k + 0] = getY(float3(sr.w, sg.w, sb.w));
- p[j + 0][k + 1] = getY(float3(sr.z, sg.z, sb.z));
- p[j + 1][k + 0] = getY(float3(sr.x, sg.x, sb.x));
- p[j + 1][k + 1] = getY(float3(sr.y, sg.y, sb.y));
- }
- }
- #else
- NIS_UNROLL
- for (int j = 0; j < 4; j++)
- {
- NIS_UNROLL
- for (int k = 0; k < 4; k++)
- {
- const float3 px = in_texture.SampleLevel(samplerLinearClamp, float2(tx + k * kSrcNormX, ty + j * kSrcNormY), 0).xyz;
- p[j][k] = getY(px);
- }
- }
- #endif
- const int idx = py * numPixelsX + px;
- shEdgeMap[idx] = (NVF4)GetEdgeMap(p, 0, 0);
- shEdgeMap[idx + 1] = (NVF4)GetEdgeMap(p, 0, 1);
- shEdgeMap[idx + numPixelsX] = (NVF4)GetEdgeMap(p, 1, 0);
- shEdgeMap[idx + numPixelsX + 1] = (NVF4)GetEdgeMap(p, 1, 1);
- // normalize luma to 255.0f and write out to shmem
- shPixelsY[idx] = (NVF)(p[1][1] * NIS_SCALE_FLOAT);
- shPixelsY[idx + 1] = (NVF)(p[1][2] * NIS_SCALE_FLOAT);
- shPixelsY[idx + numPixelsX] = (NVF)(p[2][1] * NIS_SCALE_FLOAT);
- shPixelsY[idx + numPixelsX + 1] = (NVF)(p[2][2] * NIS_SCALE_FLOAT);
- }
- LoadFilterBanksSh(threadIdx, blockDim);
- GroupMemoryBarrierWithGroupSync();
- for (uint k = threadIdx; k < NIS_BLOCK_WIDTH * NIS_BLOCK_HEIGHT; k += blockDim)
- {
- const int2 pos = int2(k % NIS_BLOCK_WIDTH, k / NIS_BLOCK_WIDTH);
- const int dstX = dstBlockX + pos.x;
- const int dstY = dstBlockY + pos.y;
- const float srcX = (0.5f + dstX) * kScaleX - 0.5f;
- const float srcY = (0.5f + dstY) * kScaleY - 0.5f;
- #if NIS_VIEWPORT_SUPPORT
- if (srcX > kInputViewportWidth || srcY > kInputViewportHeight ||
- dstX > kOutputViewportWidth || dstY > kOutputViewportHeight)
- {
- return;
- }
- #endif
- const int px = floor(srcX) - srcBlockStartX;
- const int py = floor(srcY) - srcBlockStartY;
- const int start_idx = py * numPixelsX + px;
- // load 6x6 support to regs
- float p[6][6];
- {
- NIS_UNROLL
- for (int i = 0; i < 6; ++i)
- {
- NIS_UNROLL
- for (int j = 0; j < 6; ++j)
- {
- p[i][j] = shPixelsY[start_idx + i * numPixelsX + j];
- }
- }
- }
- // compute discretized filter phase
- const float fx = srcX - floor(srcX);
- const float fy = srcY - floor(srcY);
- const int fx_int = (int)(fx * kPhaseCount);
- const int fy_int = (int)(fy * kPhaseCount);
- // get traditional scaler filter output
- const float pixel_n = FilterNormal(p, fx_int, fy_int);
- // get directional filter bank output
- float4 opDirYU = GetDirFilters(p, fx, fy, fx_int, fy_int);
- // final luma is a weighted product of directional & normal filters
- // generate weights for directional filters
- const int kShift = (kSupportSize - 2) / 2;
- float4 edge[2][2];
- NIS_UNROLL
- for (int i = 0; i < 2; i++)
- {
- NIS_UNROLL
- for (int j = 0; j < 2; j++)
- {
- // need to shift edge map sampling since it's a 2x2 centered inside 6x6 grid
- edge[i][j] = shEdgeMap[start_idx + (i + kShift) * numPixelsX + (j + kShift)];
- }
- }
- const float4 w = GetInterpEdgeMap(edge, fx, fy) * NIS_SCALE_INT;
- // final pixel is a weighted sum filter outputs
- const float opY = (opDirYU.x * w.x + opDirYU.y * w.y + opDirYU.z * w.z + opDirYU.w * w.w +
- pixel_n * (NIS_SCALE_FLOAT - w.x - w.y - w.z - w.w)) * (1.0f / NIS_SCALE_FLOAT);
- // do bilinear tap for chroma upscaling
- #if NIS_VIEWPORT_SUPPORT
- float4 op = in_texture.SampleLevel(samplerLinearClamp, float2((srcX + kInputViewportOriginX) * kSrcNormX, (srcY + kInputViewportOriginY) * kSrcNormY), 0);
- #else
- float4 op = in_texture.SampleLevel(samplerLinearClamp, float2((dstX + 0.5f) * kDstNormX, (dstY + 0.5f) * kDstNormY), 0);
- #endif
- #if NIS_HDR_MODE == NIS_HDR_MODE_LINEAR
- const float kEps = 1e-4f;
- const float kNorm = 1.0f / (NIS_SCALE_FLOAT * kHDRCompressionFactor);
- const float opYN = max(opY, 0.0f) * kNorm;
- const float corr = (opYN * opYN + kEps) / (max(getYLinear(float3(op.x, op.y, op.z)), 0.0f) + kEps);
- op.x *= corr;
- op.y *= corr;
- op.z *= corr;
- #else
- const float corr = opY * (1.0f / NIS_SCALE_FLOAT) - getY(float3(op.x, op.y, op.z));
- op.x += corr;
- op.y += corr;
- op.z += corr;
- #endif
- #if NIS_VIEWPORT_SUPPORT
- out_texture[uint2(dstX + kOutputViewportOriginX, dstY + kOutputViewportOriginY)] = op;
- #else
- out_texture[uint2(dstX, dstY)] = op;
- #endif
- }
- }
- #else
- #ifndef NIS_BLOCK_WIDTH
- #define NIS_BLOCK_WIDTH 32
- #endif
- #ifndef NIS_BLOCK_HEIGHT
- #define NIS_BLOCK_HEIGHT 32
- #endif
- #ifndef NIS_THREAD_GROUP_SIZE
- #define NIS_THREAD_GROUP_SIZE 256
- #endif
- #define kSupportSize 5
- #define kNumPixelsX (NIS_BLOCK_WIDTH + kSupportSize + 1)
- #define kNumPixelsY (NIS_BLOCK_HEIGHT + kSupportSize + 1)
- #define blockDim NIS_THREAD_GROUP_SIZE
- groupshared float shPixelsY[kNumPixelsY][kNumPixelsX];
- float CalcLTIFast(const float y[5])
- {
- const float a_min = min(min(y[0], y[1]), y[2]);
- const float a_max = max(max(y[0], y[1]), y[2]);
- const float b_min = min(min(y[2], y[3]), y[4]);
- const float b_max = max(max(y[2], y[3]), y[4]);
- const float a_cont = a_max - a_min;
- const float b_cont = b_max - b_min;
- const float cont_ratio = max(a_cont, b_cont) / (min(a_cont, b_cont) + kEps * (1.0f / 255.0f));
- return (1.0f - saturate((cont_ratio - kMinContrastRatio) * kRatioNorm)) * kContrastBoost;
- }
- float EvalUSM(const float pxl[5], const float sharpnessStrength, const float sharpnessLimit)
- {
- // USM profile
- float y_usm = -0.6001f * pxl[1] + 1.2002f * pxl[2] - 0.6001f * pxl[3];
- // boost USM profile
- y_usm *= sharpnessStrength;
- // clamp to the limit
- y_usm = min(sharpnessLimit, max(-sharpnessLimit, y_usm));
- // reduce ringing
- y_usm *= CalcLTIFast(pxl);
- return y_usm;
- }
- float4 GetDirUSM(const float p[5][5])
- {
- // sharpness boost & limit are the same for all directions
- const float scaleY = 1.0f - saturate((p[2][2] - kSharpStartY) * kSharpScaleY);
- // scale the ramp to sharpen as a function of luma
- const float sharpnessStrength = scaleY * kSharpStrengthScale + kSharpStrengthMin;
- // scale the ramp to limit USM as a function of luma
- const float sharpnessLimit = (scaleY * kSharpLimitScale + kSharpLimitMin) * p[2][2];
- float4 rval;
- // 0 deg filter
- float interp0Deg[5];
- {
- for (int i = 0; i < 5; ++i)
- {
- interp0Deg[i] = p[i][2];
- }
- }
- rval.x = EvalUSM(interp0Deg, sharpnessStrength, sharpnessLimit);
- // 90 deg filter
- float interp90Deg[5];
- {
- for (int i = 0; i < 5; ++i)
- {
- interp90Deg[i] = p[2][i];
- }
- }
- rval.y = EvalUSM(interp90Deg, sharpnessStrength, sharpnessLimit);
- //45 deg filter
- float interp45Deg[5];
- interp45Deg[0] = p[1][1];
- interp45Deg[1] = lerp(p[2][1], p[1][2], 0.5f);
- interp45Deg[2] = p[2][2];
- interp45Deg[3] = lerp(p[3][2], p[2][3], 0.5f);
- interp45Deg[4] = p[3][3];
- rval.z = EvalUSM(interp45Deg, sharpnessStrength, sharpnessLimit);
- //135 deg filter
- float interp135Deg[5];
- interp135Deg[0] = p[3][1];
- interp135Deg[1] = lerp(p[3][2], p[2][1], 0.5f);
- interp135Deg[2] = p[2][2];
- interp135Deg[3] = lerp(p[2][3], p[1][2], 0.5f);
- interp135Deg[4] = p[1][3];
- rval.w = EvalUSM(interp135Deg, sharpnessStrength, sharpnessLimit);
- return rval;
- }
- //-----------------------------------------------------------------------------------------------
- // NVSharpen
- //-----------------------------------------------------------------------------------------------
- void NVSharpen(uint2 blockIdx, uint threadIdx)
- {
- const int dstBlockX = NIS_BLOCK_WIDTH * blockIdx.x;
- const int dstBlockY = NIS_BLOCK_HEIGHT * blockIdx.y;
- // fill in input luma tile in batches of 2x2 pixels
- // we use texture gather to get extra support necessary
- // to compute 2x2 edge map outputs too
- const float kShift = 0.5f - kSupportSize / 2;
-
- for (uint i = threadIdx * 2; i < kNumPixelsX * kNumPixelsY / 2; i += blockDim * 2)
- {
- uint2 pos = uint2(i % kNumPixelsX, i / kNumPixelsX * 2);
- NIS_UNROLL
- for (int dy = 0; dy < 2; dy++)
- {
- NIS_UNROLL
- for (int dx = 0; dx < 2; dx++)
- {
- #if NIS_VIEWPORT_SUPPORT
- const float tx = (dstBlockX + pos.x + kInputViewportOriginX + dx + kShift) * kSrcNormX;
- const float ty = (dstBlockY + pos.y + kInputViewportOriginY + dy + kShift) * kSrcNormY;
- #else
- const float tx = (dstBlockX + pos.x + dx + kShift) * kSrcNormX;
- const float ty = (dstBlockY + pos.y + dy + kShift) * kSrcNormY;
- #endif
- const float3 px = in_texture.SampleLevel(samplerLinearClamp, float2(tx, ty), 0).xyz;
- shPixelsY[pos.y + dy][pos.x + dx] = getY(px);
- }
- }
- }
- GroupMemoryBarrierWithGroupSync();
- for (int k = threadIdx; k < NIS_BLOCK_WIDTH * NIS_BLOCK_HEIGHT; k += blockDim)
- {
- const int2 pos = int2(k % NIS_BLOCK_WIDTH, k / NIS_BLOCK_WIDTH);
- // load 5x5 support to regs
- float p[5][5];
- NIS_UNROLL
- for (int i = 0; i < 5; ++i)
- {
- NIS_UNROLL
- for (int j = 0; j < 5; ++j)
- {
- p[i][j] = shPixelsY[pos.y + i][pos.x + j];
- }
- }
- // get directional filter bank output
- const float4 dirUSM = GetDirUSM(p);
- // generate weights for directional filters
- float4 w = GetEdgeMap(p, kSupportSize / 2 - 1, kSupportSize / 2 - 1);
- // final USM is a weighted sum filter outputs
- const float usmY = (dirUSM.x * w.x + dirUSM.y * w.y + dirUSM.z * w.z + dirUSM.w * w.w);
- // do bilinear tap and correct rgb texel so it produces new sharpened luma
- const int dstX = dstBlockX + pos.x;
- const int dstY = dstBlockY + pos.y;
- #if NIS_VIEWPORT_SUPPORT
- if (dstX > kOutputViewportWidth || dstY > kOutputViewportHeight)
- {
- return;
- }
- #endif
- #if NIS_VIEWPORT_SUPPORT
- float4 op = in_texture.SampleLevel(samplerLinearClamp, float2((dstX + kInputViewportOriginX) * kSrcNormX, (dstY + kInputViewportOriginY) * kSrcNormY), 0);
- #else
- float4 op = in_texture.SampleLevel(samplerLinearClamp, float2((dstX + 0.5f) * kDstNormX, (dstY + 0.5f) * kDstNormY), 0);
- #endif
- #if NIS_HDR_MODE == NIS_HDR_MODE_LINEAR
- const float kEps = 1e-4f * kHDRCompressionFactor * kHDRCompressionFactor;
- float newY = p[2][2] + usmY;
- newY = max(newY, 0.0f);
- const float oldY = p[2][2];
- const float corr = (newY * newY + kEps) / (oldY * oldY + kEps);
- op.x *= corr;
- op.y *= corr;
- op.z *= corr;
- #else
- op.x += usmY;
- op.y += usmY;
- op.z += usmY;
- #endif
- #if NIS_VIEWPORT_SUPPORT
- out_texture[uint2(dstX + kOutputViewportOriginX, dstY + kOutputViewportOriginY)] = op;
- #else
- out_texture[uint2(dstX, dstY)] = op;
- #endif
- }
- }
- #endif
|