123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575 |
- #ifndef LINMATH_H
- #define LINMATH_H
- #include <math.h>
- #ifdef _MSC_VER
- #define inline __inline
- #endif
- #define LINMATH_H_DEFINE_VEC(n) \
- typedef float vec##n[n]; \
- static inline void vec##n##_add(vec##n r, vec##n const a, vec##n const b) \
- { \
- int i; \
- for(i=0; i<n; ++i) \
- r[i] = a[i] + b[i]; \
- } \
- static inline void vec##n##_sub(vec##n r, vec##n const a, vec##n const b) \
- { \
- int i; \
- for(i=0; i<n; ++i) \
- r[i] = a[i] - b[i]; \
- } \
- static inline void vec##n##_scale(vec##n r, vec##n const v, float const s) \
- { \
- int i; \
- for(i=0; i<n; ++i) \
- r[i] = v[i] * s; \
- } \
- static inline float vec##n##_mul_inner(vec##n const a, vec##n const b) \
- { \
- float p = 0.; \
- int i; \
- for(i=0; i<n; ++i) \
- p += b[i]*a[i]; \
- return p; \
- } \
- static inline float vec##n##_len(vec##n const v) \
- { \
- return (float) sqrt(vec##n##_mul_inner(v,v)); \
- } \
- static inline void vec##n##_norm(vec##n r, vec##n const v) \
- { \
- float k = 1.f / vec##n##_len(v); \
- vec##n##_scale(r, v, k); \
- }
- LINMATH_H_DEFINE_VEC(2)
- LINMATH_H_DEFINE_VEC(3)
- LINMATH_H_DEFINE_VEC(4)
- static inline void vec3_mul_cross(vec3 r, vec3 const a, vec3 const b)
- {
- r[0] = a[1]*b[2] - a[2]*b[1];
- r[1] = a[2]*b[0] - a[0]*b[2];
- r[2] = a[0]*b[1] - a[1]*b[0];
- }
- static inline void vec3_reflect(vec3 r, vec3 const v, vec3 const n)
- {
- float p = 2.f*vec3_mul_inner(v, n);
- int i;
- for(i=0;i<3;++i)
- r[i] = v[i] - p*n[i];
- }
- static inline void vec4_mul_cross(vec4 r, vec4 a, vec4 b)
- {
- r[0] = a[1]*b[2] - a[2]*b[1];
- r[1] = a[2]*b[0] - a[0]*b[2];
- r[2] = a[0]*b[1] - a[1]*b[0];
- r[3] = 1.f;
- }
- static inline void vec4_reflect(vec4 r, vec4 v, vec4 n)
- {
- float p = 2.f*vec4_mul_inner(v, n);
- int i;
- for(i=0;i<4;++i)
- r[i] = v[i] - p*n[i];
- }
- typedef vec4 mat4x4[4];
- static inline void mat4x4_identity(mat4x4 M)
- {
- int i, j;
- for(i=0; i<4; ++i)
- for(j=0; j<4; ++j)
- M[i][j] = i==j ? 1.f : 0.f;
- }
- static inline void mat4x4_dup(mat4x4 M, mat4x4 N)
- {
- int i, j;
- for(i=0; i<4; ++i)
- for(j=0; j<4; ++j)
- M[i][j] = N[i][j];
- }
- static inline void mat4x4_row(vec4 r, mat4x4 M, int i)
- {
- int k;
- for(k=0; k<4; ++k)
- r[k] = M[k][i];
- }
- static inline void mat4x4_col(vec4 r, mat4x4 M, int i)
- {
- int k;
- for(k=0; k<4; ++k)
- r[k] = M[i][k];
- }
- static inline void mat4x4_transpose(mat4x4 M, mat4x4 N)
- {
- int i, j;
- for(j=0; j<4; ++j)
- for(i=0; i<4; ++i)
- M[i][j] = N[j][i];
- }
- static inline void mat4x4_add(mat4x4 M, mat4x4 a, mat4x4 b)
- {
- int i;
- for(i=0; i<4; ++i)
- vec4_add(M[i], a[i], b[i]);
- }
- static inline void mat4x4_sub(mat4x4 M, mat4x4 a, mat4x4 b)
- {
- int i;
- for(i=0; i<4; ++i)
- vec4_sub(M[i], a[i], b[i]);
- }
- static inline void mat4x4_scale(mat4x4 M, mat4x4 a, float k)
- {
- int i;
- for(i=0; i<4; ++i)
- vec4_scale(M[i], a[i], k);
- }
- static inline void mat4x4_scale_aniso(mat4x4 M, mat4x4 a, float x, float y, float z)
- {
- int i;
- vec4_scale(M[0], a[0], x);
- vec4_scale(M[1], a[1], y);
- vec4_scale(M[2], a[2], z);
- for(i = 0; i < 4; ++i) {
- M[3][i] = a[3][i];
- }
- }
- static inline void mat4x4_mul(mat4x4 M, mat4x4 a, mat4x4 b)
- {
- mat4x4 temp;
- int k, r, c;
- for(c=0; c<4; ++c) for(r=0; r<4; ++r) {
- temp[c][r] = 0.f;
- for(k=0; k<4; ++k)
- temp[c][r] += a[k][r] * b[c][k];
- }
- mat4x4_dup(M, temp);
- }
- static inline void mat4x4_mul_vec4(vec4 r, mat4x4 M, vec4 v)
- {
- int i, j;
- for(j=0; j<4; ++j) {
- r[j] = 0.f;
- for(i=0; i<4; ++i)
- r[j] += M[i][j] * v[i];
- }
- }
- static inline void mat4x4_translate(mat4x4 T, float x, float y, float z)
- {
- mat4x4_identity(T);
- T[3][0] = x;
- T[3][1] = y;
- T[3][2] = z;
- }
- static inline void mat4x4_translate_in_place(mat4x4 M, float x, float y, float z)
- {
- vec4 t = {x, y, z, 0};
- vec4 r;
- int i;
- for (i = 0; i < 4; ++i) {
- mat4x4_row(r, M, i);
- M[3][i] += vec4_mul_inner(r, t);
- }
- }
- static inline void mat4x4_from_vec3_mul_outer(mat4x4 M, vec3 a, vec3 b)
- {
- int i, j;
- for(i=0; i<4; ++i) for(j=0; j<4; ++j)
- M[i][j] = i<3 && j<3 ? a[i] * b[j] : 0.f;
- }
- static inline void mat4x4_rotate(mat4x4 R, mat4x4 M, float x, float y, float z, float angle)
- {
- float s = sinf(angle);
- float c = cosf(angle);
- vec3 u = {x, y, z};
- if(vec3_len(u) > 1e-4) {
- mat4x4 T, C, S = {{0}};
- vec3_norm(u, u);
- mat4x4_from_vec3_mul_outer(T, u, u);
- S[1][2] = u[0];
- S[2][1] = -u[0];
- S[2][0] = u[1];
- S[0][2] = -u[1];
- S[0][1] = u[2];
- S[1][0] = -u[2];
- mat4x4_scale(S, S, s);
- mat4x4_identity(C);
- mat4x4_sub(C, C, T);
- mat4x4_scale(C, C, c);
- mat4x4_add(T, T, C);
- mat4x4_add(T, T, S);
- T[3][3] = 1.;
- mat4x4_mul(R, M, T);
- } else {
- mat4x4_dup(R, M);
- }
- }
- static inline void mat4x4_rotate_X(mat4x4 Q, mat4x4 M, float angle)
- {
- float s = sinf(angle);
- float c = cosf(angle);
- mat4x4 R = {
- {1.f, 0.f, 0.f, 0.f},
- {0.f, c, s, 0.f},
- {0.f, -s, c, 0.f},
- {0.f, 0.f, 0.f, 1.f}
- };
- mat4x4_mul(Q, M, R);
- }
- static inline void mat4x4_rotate_Y(mat4x4 Q, mat4x4 M, float angle)
- {
- float s = sinf(angle);
- float c = cosf(angle);
- mat4x4 R = {
- { c, 0.f, -s, 0.f},
- { 0.f, 1.f, 0.f, 0.f},
- { s, 0.f, c, 0.f},
- { 0.f, 0.f, 0.f, 1.f}
- };
- mat4x4_mul(Q, M, R);
- }
- static inline void mat4x4_rotate_Z(mat4x4 Q, mat4x4 M, float angle)
- {
- float s = sinf(angle);
- float c = cosf(angle);
- mat4x4 R = {
- { c, s, 0.f, 0.f},
- { -s, c, 0.f, 0.f},
- { 0.f, 0.f, 1.f, 0.f},
- { 0.f, 0.f, 0.f, 1.f}
- };
- mat4x4_mul(Q, M, R);
- }
- static inline void mat4x4_invert(mat4x4 T, mat4x4 M)
- {
- float idet;
- float s[6];
- float c[6];
- s[0] = M[0][0]*M[1][1] - M[1][0]*M[0][1];
- s[1] = M[0][0]*M[1][2] - M[1][0]*M[0][2];
- s[2] = M[0][0]*M[1][3] - M[1][0]*M[0][3];
- s[3] = M[0][1]*M[1][2] - M[1][1]*M[0][2];
- s[4] = M[0][1]*M[1][3] - M[1][1]*M[0][3];
- s[5] = M[0][2]*M[1][3] - M[1][2]*M[0][3];
- c[0] = M[2][0]*M[3][1] - M[3][0]*M[2][1];
- c[1] = M[2][0]*M[3][2] - M[3][0]*M[2][2];
- c[2] = M[2][0]*M[3][3] - M[3][0]*M[2][3];
- c[3] = M[2][1]*M[3][2] - M[3][1]*M[2][2];
- c[4] = M[2][1]*M[3][3] - M[3][1]*M[2][3];
- c[5] = M[2][2]*M[3][3] - M[3][2]*M[2][3];
- /* Assumes it is invertible */
- idet = 1.0f/( s[0]*c[5]-s[1]*c[4]+s[2]*c[3]+s[3]*c[2]-s[4]*c[1]+s[5]*c[0] );
- T[0][0] = ( M[1][1] * c[5] - M[1][2] * c[4] + M[1][3] * c[3]) * idet;
- T[0][1] = (-M[0][1] * c[5] + M[0][2] * c[4] - M[0][3] * c[3]) * idet;
- T[0][2] = ( M[3][1] * s[5] - M[3][2] * s[4] + M[3][3] * s[3]) * idet;
- T[0][3] = (-M[2][1] * s[5] + M[2][2] * s[4] - M[2][3] * s[3]) * idet;
- T[1][0] = (-M[1][0] * c[5] + M[1][2] * c[2] - M[1][3] * c[1]) * idet;
- T[1][1] = ( M[0][0] * c[5] - M[0][2] * c[2] + M[0][3] * c[1]) * idet;
- T[1][2] = (-M[3][0] * s[5] + M[3][2] * s[2] - M[3][3] * s[1]) * idet;
- T[1][3] = ( M[2][0] * s[5] - M[2][2] * s[2] + M[2][3] * s[1]) * idet;
- T[2][0] = ( M[1][0] * c[4] - M[1][1] * c[2] + M[1][3] * c[0]) * idet;
- T[2][1] = (-M[0][0] * c[4] + M[0][1] * c[2] - M[0][3] * c[0]) * idet;
- T[2][2] = ( M[3][0] * s[4] - M[3][1] * s[2] + M[3][3] * s[0]) * idet;
- T[2][3] = (-M[2][0] * s[4] + M[2][1] * s[2] - M[2][3] * s[0]) * idet;
- T[3][0] = (-M[1][0] * c[3] + M[1][1] * c[1] - M[1][2] * c[0]) * idet;
- T[3][1] = ( M[0][0] * c[3] - M[0][1] * c[1] + M[0][2] * c[0]) * idet;
- T[3][2] = (-M[3][0] * s[3] + M[3][1] * s[1] - M[3][2] * s[0]) * idet;
- T[3][3] = ( M[2][0] * s[3] - M[2][1] * s[1] + M[2][2] * s[0]) * idet;
- }
- static inline void mat4x4_orthonormalize(mat4x4 R, mat4x4 M)
- {
- float s = 1.;
- vec3 h;
- mat4x4_dup(R, M);
- vec3_norm(R[2], R[2]);
- s = vec3_mul_inner(R[1], R[2]);
- vec3_scale(h, R[2], s);
- vec3_sub(R[1], R[1], h);
- vec3_norm(R[2], R[2]);
- s = vec3_mul_inner(R[1], R[2]);
- vec3_scale(h, R[2], s);
- vec3_sub(R[1], R[1], h);
- vec3_norm(R[1], R[1]);
- s = vec3_mul_inner(R[0], R[1]);
- vec3_scale(h, R[1], s);
- vec3_sub(R[0], R[0], h);
- vec3_norm(R[0], R[0]);
- }
- static inline void mat4x4_frustum(mat4x4 M, float l, float r, float b, float t, float n, float f)
- {
- M[0][0] = 2.f*n/(r-l);
- M[0][1] = M[0][2] = M[0][3] = 0.f;
- M[1][1] = 2.f*n/(t-b);
- M[1][0] = M[1][2] = M[1][3] = 0.f;
- M[2][0] = (r+l)/(r-l);
- M[2][1] = (t+b)/(t-b);
- M[2][2] = -(f+n)/(f-n);
- M[2][3] = -1.f;
- M[3][2] = -2.f*(f*n)/(f-n);
- M[3][0] = M[3][1] = M[3][3] = 0.f;
- }
- static inline void mat4x4_ortho(mat4x4 M, float l, float r, float b, float t, float n, float f)
- {
- M[0][0] = 2.f/(r-l);
- M[0][1] = M[0][2] = M[0][3] = 0.f;
- M[1][1] = 2.f/(t-b);
- M[1][0] = M[1][2] = M[1][3] = 0.f;
- M[2][2] = -2.f/(f-n);
- M[2][0] = M[2][1] = M[2][3] = 0.f;
- M[3][0] = -(r+l)/(r-l);
- M[3][1] = -(t+b)/(t-b);
- M[3][2] = -(f+n)/(f-n);
- M[3][3] = 1.f;
- }
- static inline void mat4x4_perspective(mat4x4 m, float y_fov, float aspect, float n, float f)
- {
- /* NOTE: Degrees are an unhandy unit to work with.
- * linmath.h uses radians for everything! */
- float const a = 1.f / (float) tan(y_fov / 2.f);
- m[0][0] = a / aspect;
- m[0][1] = 0.f;
- m[0][2] = 0.f;
- m[0][3] = 0.f;
- m[1][0] = 0.f;
- m[1][1] = a;
- m[1][2] = 0.f;
- m[1][3] = 0.f;
- m[2][0] = 0.f;
- m[2][1] = 0.f;
- m[2][2] = -((f + n) / (f - n));
- m[2][3] = -1.f;
- m[3][0] = 0.f;
- m[3][1] = 0.f;
- m[3][2] = -((2.f * f * n) / (f - n));
- m[3][3] = 0.f;
- }
- static inline void mat4x4_look_at(mat4x4 m, vec3 eye, vec3 center, vec3 up)
- {
- /* Adapted from Android's OpenGL Matrix.java. */
- /* See the OpenGL GLUT documentation for gluLookAt for a description */
- /* of the algorithm. We implement it in a straightforward way: */
- /* TODO: The negation of of can be spared by swapping the order of
- * operands in the following cross products in the right way. */
- vec3 f;
- vec3 s;
- vec3 t;
- vec3_sub(f, center, eye);
- vec3_norm(f, f);
- vec3_mul_cross(s, f, up);
- vec3_norm(s, s);
- vec3_mul_cross(t, s, f);
- m[0][0] = s[0];
- m[0][1] = t[0];
- m[0][2] = -f[0];
- m[0][3] = 0.f;
- m[1][0] = s[1];
- m[1][1] = t[1];
- m[1][2] = -f[1];
- m[1][3] = 0.f;
- m[2][0] = s[2];
- m[2][1] = t[2];
- m[2][2] = -f[2];
- m[2][3] = 0.f;
- m[3][0] = 0.f;
- m[3][1] = 0.f;
- m[3][2] = 0.f;
- m[3][3] = 1.f;
- mat4x4_translate_in_place(m, -eye[0], -eye[1], -eye[2]);
- }
- typedef float quat[4];
- static inline void quat_identity(quat q)
- {
- q[0] = q[1] = q[2] = 0.f;
- q[3] = 1.f;
- }
- static inline void quat_add(quat r, quat a, quat b)
- {
- int i;
- for(i=0; i<4; ++i)
- r[i] = a[i] + b[i];
- }
- static inline void quat_sub(quat r, quat a, quat b)
- {
- int i;
- for(i=0; i<4; ++i)
- r[i] = a[i] - b[i];
- }
- static inline void quat_mul(quat r, quat p, quat q)
- {
- vec3 w;
- vec3_mul_cross(r, p, q);
- vec3_scale(w, p, q[3]);
- vec3_add(r, r, w);
- vec3_scale(w, q, p[3]);
- vec3_add(r, r, w);
- r[3] = p[3]*q[3] - vec3_mul_inner(p, q);
- }
- static inline void quat_scale(quat r, quat v, float s)
- {
- int i;
- for(i=0; i<4; ++i)
- r[i] = v[i] * s;
- }
- static inline float quat_inner_product(quat a, quat b)
- {
- float p = 0.f;
- int i;
- for(i=0; i<4; ++i)
- p += b[i]*a[i];
- return p;
- }
- static inline void quat_conj(quat r, quat q)
- {
- int i;
- for(i=0; i<3; ++i)
- r[i] = -q[i];
- r[3] = q[3];
- }
- static inline void quat_rotate(quat r, float angle, vec3 axis) {
- int i;
- vec3 v;
- vec3_scale(v, axis, sinf(angle / 2));
- for(i=0; i<3; ++i)
- r[i] = v[i];
- r[3] = cosf(angle / 2);
- }
- #define quat_norm vec4_norm
- static inline void quat_mul_vec3(vec3 r, quat q, vec3 v)
- {
- /*
- * Method by Fabian 'ryg' Giessen (of Farbrausch)
- t = 2 * cross(q.xyz, v)
- v' = v + q.w * t + cross(q.xyz, t)
- */
- vec3 t = {q[0], q[1], q[2]};
- vec3 u = {q[0], q[1], q[2]};
- vec3_mul_cross(t, t, v);
- vec3_scale(t, t, 2);
- vec3_mul_cross(u, u, t);
- vec3_scale(t, t, q[3]);
- vec3_add(r, v, t);
- vec3_add(r, r, u);
- }
- static inline void mat4x4_from_quat(mat4x4 M, quat q)
- {
- float a = q[3];
- float b = q[0];
- float c = q[1];
- float d = q[2];
- float a2 = a*a;
- float b2 = b*b;
- float c2 = c*c;
- float d2 = d*d;
- M[0][0] = a2 + b2 - c2 - d2;
- M[0][1] = 2.f*(b*c + a*d);
- M[0][2] = 2.f*(b*d - a*c);
- M[0][3] = 0.f;
- M[1][0] = 2*(b*c - a*d);
- M[1][1] = a2 - b2 + c2 - d2;
- M[1][2] = 2.f*(c*d + a*b);
- M[1][3] = 0.f;
- M[2][0] = 2.f*(b*d + a*c);
- M[2][1] = 2.f*(c*d - a*b);
- M[2][2] = a2 - b2 - c2 + d2;
- M[2][3] = 0.f;
- M[3][0] = M[3][1] = M[3][2] = 0.f;
- M[3][3] = 1.f;
- }
- static inline void mat4x4o_mul_quat(mat4x4 R, mat4x4 M, quat q)
- {
- /* XXX: The way this is written only works for othogonal matrices. */
- /* TODO: Take care of non-orthogonal case. */
- quat_mul_vec3(R[0], q, M[0]);
- quat_mul_vec3(R[1], q, M[1]);
- quat_mul_vec3(R[2], q, M[2]);
- R[3][0] = R[3][1] = R[3][2] = 0.f;
- R[3][3] = 1.f;
- }
- static inline void quat_from_mat4x4(quat q, mat4x4 M)
- {
- float r=0.f;
- int i;
- int perm[] = { 0, 1, 2, 0, 1 };
- int *p = perm;
- for(i = 0; i<3; i++) {
- float m = M[i][i];
- if( m < r )
- continue;
- m = r;
- p = &perm[i];
- }
- r = (float) sqrt(1.f + M[p[0]][p[0]] - M[p[1]][p[1]] - M[p[2]][p[2]] );
- if(r < 1e-6) {
- q[0] = 1.f;
- q[1] = q[2] = q[3] = 0.f;
- return;
- }
- q[0] = r/2.f;
- q[1] = (M[p[0]][p[1]] - M[p[1]][p[0]])/(2.f*r);
- q[2] = (M[p[2]][p[0]] - M[p[0]][p[2]])/(2.f*r);
- q[3] = (M[p[2]][p[1]] - M[p[1]][p[2]])/(2.f*r);
- }
- #endif
|