|
@@ -1,233 +0,0 @@
|
|
|
-# coding=utf-8
|
|
|
-# Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
|
|
|
-#
|
|
|
-# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
-# you may not use this file except in compliance with the License.
|
|
|
-# You may obtain a copy of the License at
|
|
|
-#
|
|
|
-# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
-#
|
|
|
-# Unless required by applicable law or agreed to in writing, software
|
|
|
-# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
-# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
-# See the License for the specific language governing permissions and
|
|
|
-# limitations under the License.
|
|
|
-
|
|
|
-"""Processing data for pretraining."""
|
|
|
-
|
|
|
-import argparse
|
|
|
-import json
|
|
|
-import multiprocessing
|
|
|
-import os
|
|
|
-import sys
|
|
|
-sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__),
|
|
|
- os.path.pardir)))
|
|
|
-import time
|
|
|
-import re
|
|
|
-import torch
|
|
|
-
|
|
|
-try:
|
|
|
- import nltk
|
|
|
- nltk_available = True
|
|
|
-
|
|
|
- import nltk
|
|
|
- from nltk.tokenize import sent_tokenize
|
|
|
-except ImportError:
|
|
|
- nltk_available = False
|
|
|
-
|
|
|
-from megatron.tokenizer import build_tokenizer
|
|
|
-from megatron.data import indexed_dataset
|
|
|
-
|
|
|
-
|
|
|
-# https://stackoverflow.com/questions/33139531/preserve-empty-lines-with-nltks-punkt-tokenizer
|
|
|
-class CustomLanguageVars(nltk.tokenize.punkt.PunktLanguageVars):
|
|
|
-
|
|
|
- _period_context_fmt = r"""
|
|
|
- \S* # some word material
|
|
|
- %(SentEndChars)s # a potential sentence ending
|
|
|
- \s* # <-- THIS is what I changed
|
|
|
- (?=(?P<after_tok>
|
|
|
- %(NonWord)s # either other punctuation
|
|
|
- |
|
|
|
- (?P<next_tok>\S+) # <-- Normally you would have \s+ here
|
|
|
- ))"""
|
|
|
-
|
|
|
-class IdentitySplitter(object):
|
|
|
- def tokenize(self, *text):
|
|
|
- return text
|
|
|
-
|
|
|
-def normal_cut_sentence(temp):
|
|
|
- return sent_tokenize(temp)
|
|
|
-
|
|
|
-def cut_sentence_with_quotation_marks(text):
|
|
|
- p = re.compile("“.*?”")
|
|
|
- list = []
|
|
|
- index = 0
|
|
|
- length = len(text)
|
|
|
- for i in p.finditer(text):
|
|
|
- temp = ''
|
|
|
- start = i.start()
|
|
|
- end = i.end()
|
|
|
- for j in range(index, start):
|
|
|
- temp += text[j]
|
|
|
- if temp != '':
|
|
|
- temp_list = normal_cut_sentence(temp)
|
|
|
- list += temp_list
|
|
|
- temp = ''
|
|
|
- for k in range(start, end):
|
|
|
- temp += text[k]
|
|
|
- if temp != ' ':
|
|
|
- list.append(temp)
|
|
|
- index = end
|
|
|
- return list
|
|
|
-
|
|
|
-class Encoder(object):
|
|
|
- def __init__(self, args):
|
|
|
- self.args = args
|
|
|
-
|
|
|
- def initializer(self):
|
|
|
- # Use Encoder class as a container for global data
|
|
|
- Encoder.tokenizer = build_tokenizer(self.args)
|
|
|
- if self.args.split_sentences:
|
|
|
- if not nltk_available:
|
|
|
- print("NLTK is not available to split sentences.")
|
|
|
- exit()
|
|
|
- splitter = nltk.load("tokenizers/punkt/english.pickle")
|
|
|
- if self.args.keep_newlines:
|
|
|
- # this prevents punkt from eating newlines after sentences
|
|
|
- Encoder.splitter = nltk.tokenize.punkt.PunktSentenceTokenizer(
|
|
|
- train_text = splitter._params,
|
|
|
- lang_vars = CustomLanguageVars())
|
|
|
- else:
|
|
|
- Encoder.splitter = splitter
|
|
|
-
|
|
|
- else:
|
|
|
- Encoder.splitter = IdentitySplitter()
|
|
|
-
|
|
|
- def encode(self, json_line):
|
|
|
- data = json.loads(json_line)
|
|
|
- ids = {}
|
|
|
- for key in self.args.json_keys:
|
|
|
- text = data[key]
|
|
|
- doc_ids = []
|
|
|
- sents=cut_sentence_with_quotation_marks(text)
|
|
|
- for sentence in sents:
|
|
|
- sentence_ids = Encoder.tokenizer.tokenize(sentence)
|
|
|
- if len(sentence_ids) > 0:
|
|
|
- doc_ids.append(sentence_ids)
|
|
|
- if len(doc_ids) > 0 and self.args.append_eod:
|
|
|
- doc_ids[-1].append(Encoder.tokenizer.eod)
|
|
|
- ids[key] = doc_ids
|
|
|
- return ids, len(json_line)
|
|
|
-
|
|
|
-def get_args():
|
|
|
- parser = argparse.ArgumentParser()
|
|
|
- group = parser.add_argument_group(title='input data')
|
|
|
- group.add_argument('--input', type=str, required=True,
|
|
|
- help='Path to input JSON')
|
|
|
- group.add_argument('--json-keys', nargs='+', default=['text'],
|
|
|
- help='space separate listed of keys to extract from json')
|
|
|
- group.add_argument('--split-sentences', action='store_true',
|
|
|
- help='Split documents into sentences.')
|
|
|
- group.add_argument('--keep-newlines', action='store_true',
|
|
|
- help='Keep newlines between sentences when splitting.')
|
|
|
-
|
|
|
- group = parser.add_argument_group(title='tokenizer')
|
|
|
- group.add_argument('--tokenizer-type', type=str, required=True,
|
|
|
- choices=['BertWordPieceLowerCase','BertWordPieceCase',
|
|
|
- 'GPT2BPETokenizer'],
|
|
|
- help='What type of tokenizer to use.')
|
|
|
- group.add_argument('--vocab-file', type=str, default=None,
|
|
|
- help='Path to the vocab file')
|
|
|
- group.add_argument('--merge-file', type=str, default=None,
|
|
|
- help='Path to the BPE merge file (if necessary).')
|
|
|
- group.add_argument('--append-eod', action='store_true',
|
|
|
- help='Append an <eod> token to the end of a document.')
|
|
|
-
|
|
|
-
|
|
|
- group = parser.add_argument_group(title='output data')
|
|
|
- group.add_argument('--output-prefix', type=str, required=True,
|
|
|
- help='Path to binary output file without suffix')
|
|
|
- group.add_argument('--dataset-impl', type=str, default='mmap',
|
|
|
- choices=['lazy', 'cached', 'mmap'])
|
|
|
-
|
|
|
- group = parser.add_argument_group(title='runtime')
|
|
|
- group.add_argument('--workers', type=int, default=1,
|
|
|
- help='Number of worker processes to launch')
|
|
|
- group.add_argument('--log-interval', type=int, default=100,
|
|
|
- help='Interval between progress updates')
|
|
|
- args = parser.parse_args()
|
|
|
- args.keep_empty = False
|
|
|
-
|
|
|
- if args.tokenizer_type.lower().startswith('bert'):
|
|
|
- if not args.split_sentences:
|
|
|
- print("Bert tokenizer detected, are you sure you don't want to split sentences?")
|
|
|
-
|
|
|
- # some default/dummy values for the tokenizer
|
|
|
- args.rank = 0
|
|
|
- args.make_vocab_size_divisible_by = 128
|
|
|
- args.tensor_model_parallel_size = 1
|
|
|
- args.vocab_extra_ids = 0
|
|
|
-
|
|
|
- return args
|
|
|
-
|
|
|
-def main():
|
|
|
- args = get_args()
|
|
|
- startup_start = time.time()
|
|
|
-
|
|
|
- print("Opening", args.input)
|
|
|
- fin = open(args.input, 'r', encoding='utf-8')
|
|
|
-
|
|
|
- if nltk_available and args.split_sentences:
|
|
|
- nltk.download("punkt", quiet=True)
|
|
|
-
|
|
|
- encoder = Encoder(args)
|
|
|
- tokenizer = build_tokenizer(args)
|
|
|
- pool = multiprocessing.Pool(args.workers, initializer=encoder.initializer)
|
|
|
- encoded_docs = pool.imap(encoder.encode, fin, 25)
|
|
|
- #encoded_docs = map(encoder.encode, fin)
|
|
|
-
|
|
|
- level = "document"
|
|
|
- if args.split_sentences:
|
|
|
- level = "sentence"
|
|
|
-
|
|
|
- print(f"Vocab size: {tokenizer.vocab_size}")
|
|
|
- print(f"Output prefix: {args.output_prefix}")
|
|
|
- output_bin_files = {}
|
|
|
- output_idx_files = {}
|
|
|
- builders = {}
|
|
|
- for key in args.json_keys:
|
|
|
- output_bin_files[key] = "{}_{}_{}.bin".format(args.output_prefix,
|
|
|
- key, level)
|
|
|
- output_idx_files[key] = "{}_{}_{}.idx".format(args.output_prefix,
|
|
|
- key, level)
|
|
|
- builders[key] = indexed_dataset.make_builder(output_bin_files[key],
|
|
|
- impl=args.dataset_impl,
|
|
|
- vocab_size=tokenizer.vocab_size)
|
|
|
-
|
|
|
- startup_end = time.time()
|
|
|
- proc_start = time.time()
|
|
|
- total_bytes_processed = 0
|
|
|
- print("Time to startup:", startup_end - startup_start)
|
|
|
-
|
|
|
- for i, (doc, bytes_processed) in enumerate(encoded_docs, start=1):
|
|
|
- total_bytes_processed += bytes_processed
|
|
|
- for key, sentences in doc.items():
|
|
|
- if len(sentences) == 0:
|
|
|
- continue
|
|
|
- for sentence in sentences:
|
|
|
- builders[key].add_item(torch.IntTensor(sentence))
|
|
|
- builders[key].end_document()
|
|
|
- if i % args.log_interval == 0:
|
|
|
- current = time.time()
|
|
|
- elapsed = current - proc_start
|
|
|
- mbs = total_bytes_processed/elapsed/1024/1024
|
|
|
- print(f"Processed {i} documents",
|
|
|
- f"({i/elapsed} docs/s, {mbs} MB/s).",
|
|
|
- file=sys.stderr)
|
|
|
-
|
|
|
- for key in args.json_keys:
|
|
|
- builders[key].finalize(output_idx_files[key])
|
|
|
-
|
|
|
-if __name__ == '__main__':
|
|
|
- main()
|