/* coding=utf-8 * Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved. * * Licensed under the Apache License, Version 2.0 (the "License"); * you may not use this file except in compliance with the License. * You may obtain a copy of the License at * * http://www.apache.org/licenses/LICENSE-2.0 * * Unless required by applicable law or agreed to in writing, software * distributed under the License is distributed on an "AS IS" BASIS, * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. * See the License for the specific language governing permissions and * limitations under the License. */ /*This code is copied fron NVIDIA apex: * https://github.com/NVIDIA/apex * with minor changes. */ #include #include #include #include "compat.h" namespace { void compute_n1_n2( at::Tensor input, at::IntArrayRef normalized_shape, int& n1, int& n2) { int idiff = input.ndimension() - normalized_shape.size(); n2 = 1; for (int i = 0; i < (int)normalized_shape.size(); ++i) { assert( input.sizes()[i+idiff] == normalized_shape[i] ); n2 *= normalized_shape[i]; } n1 = 1; for (int i = 0; i < idiff; ++i) { n1 *= input.sizes()[i]; } } void check_args( at::IntArrayRef normalized_shape, at::Tensor gamma, at::Tensor beta ) { TORCH_CHECK(!gamma.defined() || gamma.sizes().equals(normalized_shape)); TORCH_CHECK(!beta.defined() || beta.sizes().equals(normalized_shape)); } void check_args( at::Tensor input, at::IntArrayRef normalized_shape, int& n1, int& n2 ) { int64_t normalized_ndim = normalized_shape.size(); if (normalized_ndim < 1) { std::stringstream ss; ss << "Expected normalized_shape to be at least 1-dimensional, i.e., " << "containing at least one element, but got normalized_shape=" << normalized_shape; throw std::runtime_error(ss.str()); } auto input_shape = input.sizes(); auto input_ndim = input.dim(); if (input_ndim < normalized_ndim || !input_shape.slice(input_ndim - normalized_ndim).equals(normalized_shape)) { std::stringstream ss; ss << "Given normalized_shape=" << normalized_shape << ", expected input with shape [*"; for (auto size : normalized_shape) { ss << ", " << size; } ss << "], but got input of size" << input_shape; throw std::runtime_error(ss.str()); } compute_n1_n2(input,normalized_shape,n1,n2); } void check_args( at::Tensor input, at::IntArrayRef normalized_shape, at::Tensor gamma, at::Tensor beta, int& n1, int& n2 ) { check_args(input,normalized_shape,n1,n2); check_args(normalized_shape,gamma,beta); } } void cuda_layer_norm( at::Tensor* output, at::Tensor* mean, at::Tensor* invvar, at::Tensor* input, int n1, int n2, at::IntArrayRef normalized_shape, at::Tensor* gamma, at::Tensor* beta, double epsilon); #define CHECK_CUDA(x) TORCH_CHECK(x.is_cuda(), #x " must be a CUDA tensor") #define CHECK_CONTIGUOUS(x) TORCH_CHECK(x.is_contiguous(), #x " must be contiguous") #define CHECK_INPUT(x) CHECK_CUDA(x); CHECK_CONTIGUOUS(x) std::vector layer_norm_affine( at::Tensor input, at::IntArrayRef normalized_shape, at::Tensor gamma, at::Tensor beta, double epsilon) { CHECK_INPUT(input); CHECK_INPUT(gamma); CHECK_INPUT(beta); int n1, n2; check_args(input, normalized_shape, gamma, beta, n1, n2); at::Tensor output = at::empty_like( input, gamma.options().dtype(gamma.scalar_type())); at::Tensor mean = at::empty( {n1}, input.options().dtype(at::ScalarType::Float)); at::Tensor invvar = at::empty_like(mean); cuda_layer_norm(&output, &mean, &invvar, &input, n1, n2, normalized_shape, &gamma, &beta, epsilon); return {output, mean, invvar}; } void cuda_layer_norm_gradient( at::Tensor* dout, at::Tensor* mean, at::Tensor* invvar, at::Tensor* input, int n1, int n2, at::IntArrayRef normalized_shape, at::Tensor* gamma, at::Tensor* beta, double epsilon, at::Tensor* grad_input, at::Tensor* grad_gamma, at::Tensor* grad_beta ); std::vector layer_norm_gradient_affine( at::Tensor dout, at::Tensor mean, at::Tensor invvar, at::Tensor input, at::IntArrayRef normalized_shape, at::Tensor gamma, at::Tensor beta, double epsilon) { CHECK_INPUT(dout); CHECK_INPUT(mean); CHECK_INPUT(invvar); CHECK_INPUT(input); CHECK_INPUT(gamma); CHECK_INPUT(beta); int n1, n2; check_args(input, normalized_shape, gamma, beta, n1, n2); at::Tensor grad_input = at::empty_like(input); at::Tensor grad_gamma = at::empty_like(gamma); at::Tensor grad_beta = at::empty_like(beta); cuda_layer_norm_gradient(&dout, &mean, &invvar, &input, n1, n2, normalized_shape, &gamma, &beta, epsilon, &grad_input, &grad_gamma, &grad_beta); return {grad_input, grad_gamma, grad_beta}; } PYBIND11_MODULE(TORCH_EXTENSION_NAME, m) { m.def("forward_affine", &layer_norm_affine, "LayerNorm forward (CUDA)"); m.def("backward_affine", &layer_norm_gradient_affine, "LayerNorm backward (CUDA)"); }