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Abstract— Tropical cyclone intensity estimation is a challeng-
ing task as it required domain knowledge while extracting
features, significant pre-processing, various sets of parameters
obtained from satellites, and human intervention for analysis. The
inconsistency of results, significant pre-processing of data, com-
plexity of the problem domain, and problems on generalizability
are some of the issues related to intensity estimation. In this
study, we design a deep convolutional neural network architecture
for categorizing hurricanes based on intensity using graphics
processing unit. Our model has achieved better accuracy and
lower root-mean-square error by just using satellite images than
’state-of-the-art’ techniques. Visualizations of learned features at
various layers and their deconvolutions are also presented for
understanding the learning process.

Index Terms—Deep learning, image processing, convolu-
tional neural networks, tropical cyclone category and intensity
estimation.

I. INTRODUCTION

EEP learning uses a deep architecture of multiple

processing layers composed of linear or nonlinear
transformations [1]-[6] while replacing handcrafted features
with automated feature learning and hierarchical feature
extraction [7]. Convolutional Neural Networks (CNNs) can be
used to model spatial correlation with translation invariance
making them suitable for image recognition [8], [9]. This
study proposes a deep CNN architecture for estimating the
hurricane' intensity by learning features.

A. Motivation

Since hurricanes (or tropical cyclones) possess substantial
threats and cause significant damage to lives and properties,
studying the stages of a hurricane is important to determine
its impact. From a scientific perspective, determining an
accurate TC intensity helps i) better initialization in forecast
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IWe use tropical cyclone, TC, cyclone, and hurricane interchangeably in
this paper.

TABLE I

SAFFIR-SIMPSON HURRICANE WIND SCALE
AND RELATED CLASSIFICATIONS

[ Category | Symbol | Wind speeds [ Damage |
Five H5 > 137 knots Catastrophic
Four H4 113-136 knots | Catastrophic
Three H3 96-112 knots Devastating
Two H2 83-95 knots Extensive
One H1 64-82 knots Significant
Tropical storm TS 34-63 knots Significant
Tropical depression | TD 20-33 knots Small
No Category NC < 20 knots -
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Fig. 1. Illustration of common development patterns and their intensities
according to the Dvorak technique [13].

models, leading to more accurate forecasts, ii) more accurate
historical records of TCs, especially if a technique can be
consistently applied to older satellite imagery (i.e., intensity
reanalysis), and iii) providing consistent intensity estimates as
current intensity estimates are made via a subjective algorithm
(Dvorak technique) that is applied inconsistently in different
forecast areas. Initial errors are too high, especially for weak
and storms that are transitioning in structure.

In this study, we use Saffir-Simpson Hurricane Wind
Scale (SSHWS) (provided in Table I) along with intensity
categorization for tropical storm and tropical depression as
tropical cyclone (TC) intensity categories. Since TC intensity
is based on maximum wind speeds (MWS), estimating the
TC intensity by just using image content is a challenging
problem. There are a number of techniques that utilize
satellite imagery for estimating tropical cyclone intensity
using Dvorak [10], [11] and deviation-angle variance
technique (DAVT) [12] techniques.

The main assumption of the Dvorak method is that
cyclones with similar intensity tend to have a similar pattern.
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Figure 1 [13] shows some development patterns used by
the Dvorak technique. Once a pattern is detected over a
24-hour period, the features such as length and banding
from the storm are further analyzed to reach a particular
T-number [14]. This relates tropical cloud structures to storm
intensity. Nevertheless, this technique is not perfect and still
suffers from subjective biases. Due to inherent limitations of
the empirical method used, it cannot determine subtropical
cyclone intensity. Today, with successful application of the
Dvorak technique for more than 30 years along with some
modifications and improvements, it is used worldwide for TC
intensity estimation. The Advanced Dvorak Technique [15]
provides a nearly instantaneous estimate of TC intensity in an
objective manner. It removes a large amount of the subjectivity
inherent in the process and produces errors similar to a human
in most cases.

On the other hand, the deviation angle variance tech-
nique (DAVT) technique quantifies the axis symmetry of trop-
ical cyclones in infrared (IR) satellite imagery and performs a
type of directional gradient statistical analysis of the brightness
of IR images. While initial versions assumed that the center
is available as a reference for computations, later the center
finding was automated [16]. DAVT techniques use differ-
ent models and parameters for different regions of tropical
cyclones. The DAVT technique was described and applied
to the North Atlantic region by Pineros et al. (2008, 2011),
[17], [18] and Ritchie et al. (2012) [16] and to the
North Pacific region by Ritchie et al. (2014) [12]. Ritchie et al.
(2014) [12] proposed two different fit models for eastern North
pacific region and western North Pacific region. However,
using best-track centers at 6-hour intervals is not reliable as
cyclones change its form and path continuously and frequently.

In this study, we focus on obtaining higher accuracy and
lower root mean squared (RMS) intensity error than previ-
ously used techniques such as DAVT [12] and Dvorak tech-
niques [10], [11]. The efficiency of those techniques [10]-[12]
depends on the knowledge of a person using the technique.
Although TC intensity estimation has been greatly studied and
many techniques have been devised [10]-[12], [18], determin-
ing the intensity of TCs with high confidence and accuracy is
still challenging. The major issues with previous approaches
are inconsistency, significant pre-processing, complexity, and
generalizability.

1) Inconsistency: Previous techniques provide different
root-mean-square intensity error (RMSE) values for different
regions. The deviations in these RMSE values for differ-
ent regions make the results inconsistent.

2) Significant Pre-Processing: Dvorak technique requires
a 24-hour change in pattern before the pre-estimation of
the intensity. Similarly, DAVT requires hurricane images
with marked hurricane centers. So, evaluation and estimation
require significant pre-processing steps like measurement of
the cloud system, eye, curve, shear and 24-hour changes in
the pattern.

3) Complexity: Dvorak technique depends on different geo-
physical properties and DAVT relies on finding the eye (or
center) of the cyclone. The number of constraints in these
techniques makes it hard to implement. Usually, domain

knowledge is required for these techniques.

4) Generalizability: Different models for hurricanes in dif-
ferent regions are used in techniques like Dvorak and DAVT.
Dvorak works in tropical regions but not in subtropical regions.
Similarly, DAVT [12] proposed two different fitting models
for western and eastern North Pacific regions. Developing
a method or model that works for all regions or types of
hurricanes is important for generalizability.

B. Our Contribution

Successful applications of convolutional neural networks for
image recognition with high accuracy [9], [19]-[23], motivated
us using convolutional neural network for hurricane intensity
analysis. To the best of our knowledge, deep convolutional
neural networks have not been studied for hurricane inten-
sity analysis. In this study, we present a deep convolutional
network architecture for estimating tropical cyclone intensity
without relying on domain knowledge while extracting fea-
tures, signii'cant pre-processing, various sets of parameters
obtained from satellites, and human intervention for analysis.
The critical features such as the curvature, bend, eye, color
intensity, pattern, efc that are required to estimate the intensity
of TC are automatically extracted from a series of feature
maps generated in each step of convolution. In addition, the
convolutional technique is so fast that lenet [9] can be trained
with a huge dataset in a matter of hours. We can harness the
computation power of Graphics Processing Unit (GPU) that
drastically reduces the computation time despite a number of
sequential layers. The applicability of our model for all regions
(Atlantic and Pacific) validates its generalizability. This model
corrects itself by backpropagation in case of misclassifications.
We also present visualization of feature maps from each layer
of convolution using deep visualization toolbox [24]. Our
model, using caffe framework [25] with GPU, can estimate
the intensity of any new cyclone in less than a second. Not
only it obtained better accuracy but it also achieved lower RMS
intensity errors value than other recent and old techniques. Our
model analyzes images and then provides the TC category.

This paper is organized as follows. The following section
provides information about deep CNNs. Section 3 explains
our layers and architecture of our deep CNN. The experi-
mental results, visualizations, and performance are provided in
Section 4. The discussion on problematic cases and limitations
are covered in Section 5. The last section concludes our paper.

II. DEEP CONVOLUTIONAL NEURAL NETWORK

Convolutional Neural Networks (CNNs) have been suc-
cessfully applied for processing two-dimensional visual data
[2], [9], [26], [27]. Since CNNs are inspired by the orga-
nization of animal visual cortex in biological processes,
many neurally-inspired models can be found in the literature
(e.g., LeCun et al. [27]). The overlapping sub-regions of the
visual field, called receptive fields, are obtained through the
collection of small neurons across multiple layers in a CNN.
This overlapping mechanism allows CNNs to tolerate the
translation of an input image.

CNNs are variants of multilayer perceptrons [9], [27].
A convolutional network consists of various combinations
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Fig. 2. Network architecture for hurricane intensity estimation showing different steps of convolution and pooling.
TABLE II
CONFIGURATION OF OUR CONVOLUTIONAL NETWORK

Layer Shape Output Size Parameter Shape Parameters
Input 3@232x232
convl 64@10x10, s=3, p=0 75x75 (64, 3, 10, 10) 19,264
pooll 3x3, s=2, p=0 37x37
conv?2 256@5x5, s=1, p=0 33x33 (256, 64, 5, 5) 409,856
pool2 3x3, s=2, p=0 16x16
conv3 288@3x3, s=1, p=1 16x16 (288, 256, 3, 3) 663,840
pool3 2x2, s=1, p=0 15x15
conv4 272@3x3, s=1, p=1 15x15 (272, 288, 3, 3) 705,296
convb 256@3x3, s=1, p=0 13x13 (256, 272, 3, 3) 528,984
pool5 3x3, s=2, p=0 6x6
fc6 3584 (3584, 9216) 27,872,768
fc7 2048 (2048, 3584) 7,342,080
fc8 8 (8, 2048) 16,392

37,558,480

of convolutional and fully connected layers. The number of
feature maps generated by a convolution layer is equal to
the number of its kernels [9]. The outputs (feature maps) of
a series of convolutional layers are fed into fully connected
layers of a neural network for classification. The loss layer
then penalizes the deviation between actual and classified
labels. Generally, a deep neural network is designed as a feed-
forward network and can be trained with the backpropagation
algorithm. As the errors are backpropagated in a network, the
network is optimized by updating the weights and biases to
minimize the loss function. Use of shared parameters (weight
and bias) with sparse connectivity reduces the number of free
parameters to be learned, thus improves the computational
performance [9], [27]. This also helps address overfitting
problem.

Pooling layer is an important layer in a deep CNN and
typically follows the convolutional layer. Max pooling has
been used frequently in the literature [9], [22], [28]. Max
pooling reduces the number of features by selecting the feature
that has the maximum value among a set of features. Pooling
layer also improves the robustness of the network.

Various methods [3], [5], [22], [29] have successfully used
backpropagation method of Kelley [30]. Today many pattern
recognition tasks are achieved through a backpropagation-
trained neural network. For the high-level abstraction of fea-
tures and to learn complicated functions, deep architectures

are widely used nowadays [1]-[6], [26]. Various deep learning
architectures have produced state-of-the-art results on various
computer vision tasks [4]. For example, the LeNet-5 network
has been successfully applied to hand-written number recogni-
tion. Deep learning can successfully unfold high-level abstrac-
tions of features and select useful features for learning [3], [5].

The complexity of a classification task and the depth of
the network along with limited computing resources makes
training deep CNNs difficult and lengthy. Since training a
deep CNN may take significant time, GPUs have also been
used for training convolutional neural networks for com-
puter vision problems [23], [31]. Alex er al. (2012) [22]
used GPU for training millions of high-resolution images
and won ImageNet classification contest. Later, the model
of Zeiler and Fergus (2013) [28] outperformed the model by
Alex et al. [22].

III. OUR DEEP CNN LAYERS AND ARCHITECTURE

The architecture of our deep CNN is shown in Figure 2.
Details of the input shape, filter shape, stride, padding, output
size and parameters are tabulated in Table II. It clearly
provides the number of kernels used in each layer along with
corresponding stride and padding. For example, 3-channel
input of size 232x232 is convolved with convl (64 kernels
of size 10x 10, with stride=3 and padding=0).This produces
64 feature maps of size 75x75. 19,264 parameters are learned
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in this process. Applying pooll on this output produces maps
of size 37x37 and so on. Around 37.5 million parameters are
learned throughout the network.

A. Overview of Layers

The weights of filters are initialized using a gaussian noise
and learned through training. Convolutional layer convolves
input with 3-dimensional filters and applies ReLU for non-
linearity. Similarly, fully connected layer calculates the inner
product and applies ReLU for non-linearity:

f(x) = max(0, x) (1

The convolutional output at layer [ is given in Equation 2,
where x;; is the output unit at position (i, j), K %K is the size
of filter, wyy, is the value of weighted kernel at position (a, b),
yf;rla)(Hb) is a receptive field at position (i +a), (j + b) from
layer [ — 1, and B’ is the bias for layer /.

K—1K-1
I -1 1
X =2 D WabViirayjm T B @
a=0 b=0

The hyperparameters such as the size of filters may vary at
different layers. The spatial size of the output volume (W,) is
computed from these hyperparameters as in Equation 3, where
W; is the input volume size, k is the size of kernel applied
with stride s and padding p.

W, —k+ 2%
W0=%”+1 3)

Pooling provides translation invariance, reduces the number
of parameters through down-sampling [23], and helps avoid
overfitting. In our deep CNN, max pooling layer follows the
first, second, third and fifth convolutional layers.

We use the local response normalization (LRN) across
channels. This helps achieve lateral inhibition by normalizing
over local input regions [32]. Normalization [33] is done by
dividing each input by:

B
(1 + % lez)

where n is the size of local region and o and S are basic
parameters. The units in the same position but from different
channels are normalized in this way.

The last layer in Figure 2 consists of 8 units (equal to the
number of distinct classes). We use softmax loss layer for
computing multinomial logistic loss [25] to update the weight
parameters that minimizes the loss function and to determine
a single class out of K mutually exclusive classes as follows:

1Y exp fy
L=-~ Zlog(iy") 4)

K
n=1 Zk:l eXp fk

where y, is the actual label for input x,,, fi is the k’ h element
of the vector of class scores, and fy, is the class score for x,
corresponding to y,’” column.

Softmax takes input from a fully connected layer and
produces a probability value per class. The loss is averaged
over entire mini-batch computed from classified labels and

actual labels. Then the final loss is computed by summing
up total weighted loss over the network. Loss and gradient
with respect to loss are computed with forward and backward
passes, respectively.

We used stochastic gradient descent (SGD) technique to find
the minimum cost iteratively. For mini-batch of N dataset, the
optimization is computed as the average loss over the mini-
batch as:

1 & .
L)~ = > fu(X) +2r(W) ()

where L(W) is the stochastic approximation of objective,
fw(X') is the loss on data instance X', r(W) is the regular-
ization term, and A is the weight decay for the regularization
term. SGD updates the weights by combining previous weights
and the negative gradient of loss [22].

Vier = uVi — aVL(Wy) (6)
Wit = Wi + Vi (7

In Equation 6, the learning rate () is the weight of the
negative gradient, and the momentum () is the weight of
its previous update value (V;). In Equation 7, W;41 is the
new updated weight using the previous weight (W;) and
the new updated value (V;y1). These hyperparameters are
used in our work as the basis of “Rule of Thumb” [34]. We
use a = 0.001 in the beginning and gradually decrease it
by constant factor of 10 (y = 0.1). The use of momentum
smooths the weight updates across iterations and makes SGD
stable and faster [25]. We used momentum value as ¢ = 0.9.
As given in Figure 2, the model computes fi in forward
pass and the gradient V fy in backward pass.

B. Optimization

1) Hyperparameters: We tend to use larger convolution fil-
ter size for larger input and decrease the filter size gradually for
higher layers. Layers near the input have fewer filters than that
of the higher layers. However, the number of filters depends
on the capacity of the network and the complexity of the
task. In addition to convolution filters, we also need to choose
the appropriate size of pooling filters. Large pooling filter
drastically reduces the parameters. While large pooling filter
may lead to a substantial loss in information, suitable filter size
helps to mitigate overfitting. Determining the shape, size, and
number of filters is always challenging. It is important to use
the right level of granularity for the dataset considering the
task complexity.

2) Regularizations: Regularization is a technique to prevent
overfitting in machine learning by penalizing higher order fea-
tures to smooth out the learning curve [22]. In our experiments,
we have used the model obtained at around 90% validation
accuracy for early stopping. Then we test our test dataset
with this model. Sometimes, early stopping [1] may cause
underfitting. Dropout method [2], [35] prevents overfitting and
improves performance. We used a general dropout of p = 0.5
in our model.
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TABLE III
CYCLONES USED FOR DATASET CREATION

Region | Year | Cyclones
1998 | Mitch
2003 | Isabel
2004 | Ivan
2005 | Emily, Katrina, Rita, Wilma
Atlantic [ 2007 | Dean, Felix
Alex, Bonnie, Colin, Danielle, Earl, Fiona,
2010 Five, Gaston, Igor, Julia, Karl, Lisa,
Matthew, Nilcole, Otto, Paula, Richard,
Shary, Tomas, Two
Arlene, Bret, Cindy, Don, Emily, Franklin,
2011 | Gert, Harvey, Irene, Jose, Katia, Lee, Maria,
Nate, Ophelia, Philippe, Rina, Sean, Ten
Alberto, Beryl, Chris, Debby, Ernesto,
2012 Florence, Gordon, Helene, Isaac, Joyce,
Kirk, Leslie, Michael, Nadine, Oscar, Patty,
Rafael, Sandy, Tony
2014 | Edouard
2002 | Elida, Fausto, Hernan, Kenna
2005 | Jova, Kenneth
2006 | Bud, Daniel, Ioke, John, Lane
2007 | Flossie
Pacific 2008 | Hernan, Norbert
2009 | Felicia, Guillermo, Jimena, Rick
2010 | Celia, Darby
2011 Adrian, Dora, Eugene, Hilary, Jova, Ken-
neth
2012 | Bud, Emilia, Miriam, Paul

IV. EXPERIMENTS

In this section, we explain our dataset, training and testing,
visualization of features, and performance analysis.

A. Dataset

Our dataset has two components: i) infrared (IR) hurricane
images and ii) data for hurricanes. We formed our dataset by
i) collecting information from different resources that have
varying sampling rate, ii) fusing data into a single dataset,
iii) interpolating hurricane data for images, and iv) aug-
menting additional images by transformations. We obtained
hurricane images from tropical cyclone repository of the
Marine Meteorology Division of U.S. Naval Research Lab-
oratory (http://www.nrlmry.navy.mil). These satellite infrared
(IR) images are captured around fifteen minutes apart and have
additional information such as year, date, time and name of
the hurricane.

We used HURDAT2 data (http://www.nhc.noaa.gov/
data/#hurdat) to label images. This hurdat2 is Tropical Cyclone
Best Track Reanalysis data.> We also collected a different
recon-only test dataset (http://www.nhc.noaa.gov/recon.php)
for evaluating our model. This test set was totally based on
the recon-informed hurricane date and time. This dataset was
not used for training.

1) Cyclones and Images in Dataset: To build a single
model for estimating intensity, we used cyclone images from
68 Atlantic cyclones and 30 Pacific cyclones from 1999 to
2014 (http://www.nrlmry.navy.mil/tcdat/), which are provided

2Best track data consist of the positions and intensities during the life cycle
of a tropical cyclone.
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atl_ISABEL-A_2003-09-11:14_138.33-AND-B_2003-09-11:16_141.67k

RMSE: 0.06 SSIM:0.78

Fig. 3. RMSE, SSIM and pixelwise difference plot for images captured
two hours apart. Hurricane Isabel from the Atlantic region (a) 2003-09-11:14
(138.33 kt) (b) 2003-09-11:16 (141.67 kt).

Fig. 4. Illustration of various transformations used (hurricane IVAN from
2014-09-15). (a) original (b) 90° rotation (c) 180° rotation (d) 270° rotation
(e) horizontal flip, and (f) vertical flip.

in Table IIl. To avoid the side-effect of unbalanced distri-
bution of TC categories while training our deep CNN, we
tried to balance the distribution by using storms that reach
at least H3 category (there could be some exceptions). We
collected 8,138 images for every 2 hours from 98 cyclones
in Table III. Since hurdat2 data was available every 6 hours,
we interpolated 6-hour hurdat2 data to obtain maximum wind
speed at every two hours. This provided us labels (hurricane
category) for images every two hours. For validation purposes,
we provide a sample image difference at two hours apart and
their Structural Similarity Index Measure (SSIM)? and Root
Mean Squared Error (RMSE) values in Figure 3. With the help
of best track data, all images were properly labeled on the
basis of their respective maximum wind speed using Table I.
Then we applied 5 image transformations (horizontal and
vertical flips, and rotations of 90°, 180°, and 270° as shown in
Figure 4) to increase the number of images to 48,828 images.
We used the same hurricane data of the original image for
these transformed images. Moreoever, separate 2,646 images
were collected for testing recon-only dataset.

2) Pre-Processing: First, we cropped unnecessary text from
those images. Then, we formed the maximal square images
by removing the longer region from these rectangular image.

3Structural Similarity Index Measure is the index to measure the similarity
between two images. While SSIM=1 indicates perfect similarity, SSIM=0
indicates no similarity.
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TABLE IV
TRAINING, VALIDATION AND TEST DATASETS

| Hurricane Category | Train [ Validation | Test [ Total |

H1 3314 1104 1816 6234
H2 1860 620 994 3474
H3 1848 616 992 3456
H4 1886 628 1032 3546
H5 603 201 306 1110
NC 126 42 54 222
TD 6363 2121 3576 12060
TS 9863 3288 5575 18726
ota 25863 8620 14345 48828
Total

After resizing each into a 256 x256 image, a 232x232 region
is cropped randomly to input to our model.

B. Training and Testing

We split our dataset of 48,828 images into training, test
and validation sets mutually exclusive as shown in Table IV.
Each transformed image is maintained in the same set as its
original image. In other words, if an original image goes into
the training set, its transformed images are also assigned to the
training set. However, there may be a few transformed images
separated from its original image due to split ratio (percentage)
between these sets. However, this should not have any major
impact on the training as well as overall accuracy.

For recon-only test dataset, we used recon-informed hurri-
cane date, time and speed. We have carefully chosen instances
which have correspondence in our hurdat2 test set. This helps
us use an available untrained image for that instance.
Moreover, this provides the intensity value somewhat
independent of the Dvorak technique [36] and helps compare
RMSE values of our HURDAT?2 test dataset with those of
recon-only dataset.

We generated a mean image of images in our training
dataset. All training images were subtracted from the mean
image. So basically we trained our network on the centered
(0-mean) raw RGB values of pixels [22]. This makes our
model more robust to the change of contrast in images.

Our network was trained on GRID K520 4GB GPU. It took
around 8 hours to complete 65 epochs of training. We stopped
training at around 90% validation accuracy to prevent overfit-
ting. Using GPU of 4GB memory restricted the maximum size
of networks that can be trained. Therefore, we implemented
a mini-batch system for training. A single epoch of training
involves running all mini-batches to cover the training dataset.
We trained our model using caffe framework (in C++), which
supports CUDA.

Figure 5 shows the graph of the validation accuracy, valida-
tion loss, and training loss for each training iteration. As the
number of epochs increases, the model learns better. This can
be observed by the gradual increase in accuracy and decrease
in loss after each epoch. The slope of the accuracy curve
becomes close to 0 with a high epoch number. This indicates
convergence to the best model and it is a good indicator of
stopping training. Stepwise learning rate (a) is reduced by a
factor of 10 in our study.

Loss
T
3

10 20 50 60

30
Epoch
M |oss (val)

M |oss (train) [ accuracy (val)

Fig. 5. Accuracy and loss plots in the training process.

7t activated map

Input image
P & Max pooling 1

1%t layer convolution Normalization 1

Fig. 6. Feature maps generated from first convolutional layer of our network.

The model obtained at around 90% validation accuracy was
used for testing. We tested our model against the collection
of images from both the Atlantic and Pacific regions. This
will help us observe the generalizability of our model to
classify tropical cyclones from both regions. We analyzed the
top (top-1) and the second best (top-2) classification for each
image in the dataset. The probabilities from softmax function
are used in classification. The category is assigned the TC class
with the highest probability.

C. Visualization

Figure 6 displays the visualizations at the first convolution
layer using deep visualization toolbox [24]. Input image along
with the feature maps from the first convolution, normalization
and pooling are shown sequentially. Each filter produces a
different map. The 7" feature map is presented by zooming.
Activated images from the first convolution are easy to inter-
pret. Visualizations for other higher layers are displayed in
Figure 7. It is hard to analyze the cause of activations in those
feature maps.

113" and 39" feature maps generated from conv2 are
shown in Figure 8. Feature map 39 is activated with the upper
curvature of hurricane structure whereas feature map 113 is
activated with the overall curved shape of the input hurricane
image. This shows that each feature map learns different
structures and features from the same input.

Synthetic images of activation maps generated using deep
visualization toolbox [24] are shown in Figure 9 to visualize
high activation as a result of regularized optimization. Each
image corresponds to a unit representing a category in the
fc8 layer. Circular motion for categories of H1, H2, and H3,
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TABLE V
COMPARISON OF RESULTS ON DIFFERENT NETWORK CONFIGURATIONS. THE BEST RESULTS ARE HIGHLIGHTED IN BOLD

Model Top-1 Top-2 fl-score | RMSE | MAE
ID [ CNNs | FCs | Parameters [| Accuracy | Accuracy (kt) (kt)
C60@10, P1, C256@5, P2, C256@3, P3, C192@3, C216@3, P5,
M1 5 3 FC3072, FC1536, dropout=0.6, a=0.001, 11=0.9 77.85% 95.04% 0.78 11.05 7.65
C56@11, P1, C216@5, P2, C256@3, P3, C192@3, P4, C216@3, P5,
M2 5 3 FC2048, FC1024, dropout=0.6, a=0.001, 1=0.9 76.58% 94.29% 0.77 11.05 7.88
Ce0@10, P1, C256@5, P2, C256@3, P3, C192@3, C216@3, FC3072,
M3 5 3 FC1536, dropout=0.5, a=0.001, 11=0.95 78.45% 95.10% 0.78 10.87 7.50
C72@12, P1, C216@5, P2, C216@3, C256@3, C256@3, C216@2, o o
Md 6 3 P6, FC4096, FC3072, dropout=0.5, a=0.001, 1:=0.9 69.28% | 90.76% 069 | 1338 | 9.20
C64@10, P1, C256@5, P2, C288@3, P3, C272@3, C256@3, P5, o o
M5 5 3 FC3584, FC2048, dropout=0.5, a=0.001, 1:=0.9 80.66% 95.47% 0.80 10.18 7.28

Conv3+norm3

Norm 3:
chan 156

Fully connected 7

Fullv connected 6

Conv5+nool5

Fig. 7. Visualization for layers from convolution 3 to fully connected 7.

feature map 113

feature map 39

Input image

Feature maps from conv2

Fig. 8. Feature maps from second convolutional layer.

and random structure for NC, TD, and TS can be observed.
Synthetic H4 and H5 images have smooth texture with the
prominent eye of hurricane located nearly at the center.

D. Performance Analysis

In this section, experimental results are presented, and the
performance of our model is compared with the performance
of previous techniques for intensity estimation.

1) Models: Once there is a somewhat acceptable archi-
tecture, its hyperparameters could be adjusted based on the
validation dataset. In our case, we have not always got
consistent response while trying our architecture with different
hyperparameters.

Fig. 9. Synthetic images of 8 units of fc8 layer. Each unit corresponds to
single class label.

For example, consider models M1 and M3 in Table V.
Despite missing the fifth pooling layer (P5) that M1 had,
the accuracy of M3 is slightly higher than the accuracy
of M1. Compared to M1, M2 had the additional fourth pooling
layer (P4). The number of kernels used in the first and second
convolutional layer is slightly less in M2. Despite using P4
in M2, its accuracy is even lesser than the accuracy of MI.
The pooling layer P4 did not improve the performance of M4.
If models M3 and M4 are compared, M4 has one more
convolutional layer, while the number of initial kernels in M4
is more than that of M3, the others are slightly different. After
the second pooling layer (P2), M4 has only pooling layer
after the sixth convolutional layer (P6). This generated the
lowest accuracy among models in Table V. The number of
parameters learned in M4 is significantly higher compared
to M3. Model M5 is a type of fusion of other models. Its
number of kernels for the first convolutional layer is less than
that of M4 (with the lowest accuracy) but higher than others.
It has the additional fifth pooling layer (P5) that M3 (the
second highest accuracy) did not have. Its parameters for fully
connected layers is less than M4 but higher than others. Model
MS5 has generated the best results in our experiments.

The model used for the rest was the final snapshot taken at
the end of 56,095 iteration (equivalent to 65 epochs) that
obtained around 90% validation accuracy for the best model.
4GB RAM and 4GB GPU memory were enough to train
our network in about eight hours. After classifying 14,345
hurdat2 and 2,646 recon-only test images, we analyzed the
performance of our model.
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TABLE VI
CONFUSION MATRIX

hurdat2 Recon
NC TD TS H1 H2 | H3 H4 H5 | Total NC | TD | TS H1l | H2 | H3 | H4 | H5 | Total
NC 32 20 2 0 0 0 0 0 54 0 0 0 0 0 0 0 0 0
g‘ TD 9 3174 393 0 0 0 0 0 3576 0 71 31 0 0 0 0 0 102
o TS 1 488 4838 208 25 10 3 2 5575 0 87 849 44 3 1 0 0 984
S H1 0 16 423 1235 | 115 20 7 0 1816 0 1 38 322 36 7 4 0 408
= H2 0 0 70 193 614 98 19 0 994 0 0 13 54 181 39 13 0 300
2 H3 0 0 35 37 156 | 657 106 1 992 0 0 15 27 32 195 48 1 318
:ﬁ H4 0 0 14 4 24 117 | 816 57 1032 0 0 7 3 8 25 319 28 390
H5 0 0 0 0 1 14 86 205 306 0 0 0 0 1 3 42 98 144
\ Total [[ 42 [ 3698 [ 5775 [ 1677 | 935 [ 916 [ 1037 | 265 | 14345 [| 0 [ 159 | 953 [ 450 [ 261 | 270 | 426 [ 127 | 2646 |
TABLE VII TABLE VIII
CLASSIFICATION REPORT Topr-1 AND TOP-2 HITS
hurdat2 Recon [ Category [ Total [ Top-1 [ 274 hit [ Top-2 ]
NC | 076 | 059 | 067 | 54 - . - - TD 3576 | 3174 364 3538
TD | 0.86 | 0.89 | 0.87 | 3576 045 | 0.70 | 0.54 102 TS 5575 4838 665 5503
TS | 0.84 | 0.87 | 0.85 | 5575 0.89 | 0.86 | 0.88 984 H1 1816 1235 432 1667
H1 0.74 | 0.68 | 0.71 1816 072 | 0.79 | 0.75 408 H2 994 614 215 829
H2 | 066 | 0.62 | 0.64 994 0.69 | 0.60 | 0.65 300 H3 992 657 212 869
H3 | 072 | 0.66 | 0.69 992 0.72 | 0.61 | 0.66 318 H4 1032 816 148 964
H4 | 079 | 0.79 | 0.79 1032 075 | 0.82 | 0.78 390 H5 306 205 73 278
[avg [ 0.80 | 0.81 | 0.80 | 14345 || 0.78 | 0.77 | 0.77 | 2646 |
TABLE IX
COMPARISON OF RMSE VALUES IN KT WITH RESULTS
2) Confusion Matrix: We present the confusion matrix FROM DAVT TECHNIQUES [12] AND [16]
of hurricane classifications for both hurdat2 and recon-only
. . . Western Eastern North
datasets in Table VI. The number of correctly classified images Cat | Hurdat2 | Recon North North Atlantic
for any category are the numbers along the diagonal. Pacific [12] | Pacific [12] [16]
In Table VI, we can see that a hurricane is more likely NC 941 - - - -
to be misclassified to a closer class (low intensity difference) 1D 6.52 9.61 11.0 10.0 -
. P . . TS 9.81 9.18 13.8 11.5 11.0
rather than to a far class (with high intensity difference). Some I 1169 994 5
near misses (i.e., misclassified by a single class) are observed. H2 12.50 11.62 195 166 12.5
For example, TD is mostly misclassified as TS, Hl as TS, | H3 | 1378 | 1597 12.6
H5 H4 d S del i inl fused with H4 11.88 13.21 19.5 26.1 17.7
as H4, and so on. So, our model is mainly confused wi H5 13.45 11.47 304
cyclones of similar intensity. Avg | 10.18 11.36

3) Classification Performance: Precision, recall (probability
of detection), and fl-score are used to evaluate the perfor-
mance of our model. Precision(P) is the ratio of the number
of true positive class values to the total number of positive
classifications. Recall(R) is the ratio of the number of true
positive classifications to the the number of positive class
values in the test data. Fl1-score(F1) is the harmonic mean of
recall and precision used to measure tests accuracy. Table VII
presents the precision, recall, and fl-score to be around 0.8.
This shows that our model is robust and is not biased towards
recall or precision. For recon-only dataset, the values of these
measures are around 0.73.

We also analyze the performance of our model by providing
top-1 and top-2 accuracies. Table VIII presents whether the
corresponding category is classified as the top-class or the
second-class. Exact-hit is the correct classification of hurricane
with the highest confidence. 2nd-hit is the correct classification
with the second highest confidence. Top-1 measure is the
number of exact-hits whereas top-2 is the sum of exact-hits

and 2nd-hits. For example, if any image with intensity H1 has
classification probabilities as H1 : 73.3%, H2:15.5%, TD :
5.1%, then it is counted in both top-1 and top-2 (exact-hit).
However, if H2 image has the same classification probabilities
then it contributes to the top-2 accuracy (2nd-hit).

For hurdat2 dataset the top-1 accuracy obtained is around
80.66%. The top-2 accuracy is 95.47% and suggests that if
misclassification between neighboring (confusing) classes is
reduced, very high accuracy can be obtained. Similarly, the
accuracies of top-1 and top-2 for recon-only dataset are around
76.91% and 92.55% respectively.

4) RMS Intensity Errors: Table IX provides root-mean-
square intensity error (RMSE) values measured in knots. For
categories TD through H4, the estimated speed is determined
as the weighted average of two highest categories with respect
to their probabilities. Otherwise, the mean speed of the cat-
egory that has the highest probability is used. We also limit
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True Positives

2

(f) H3: [H3: 95.73]

(e) H2: [H2: 78.54] (g) H4: [H4: 86.04]

(h) H5: [H5: 58.26]

Fig. 10. Correct classification with highest confidence.

the weighted average of speed within the speed interval of the
category. The difference between the estimated speed and the
actual speed is used for RMSE calculation.

The root-mean-square errors (RMSEs) of hurdat2 dataset
and recon-only dataset are 10.18 kt and 11.36 kt, respec-
tively, for the Atlantic and Pacific regions. Root-mean-square
error (RMSE) value obtained by Pineros et al. (2011) for
estimating the tropical cyclone intensity for the North Atlantic
Basin was [4.7 kt [18]. This was further improved by
Ritchie er al. (2012) using improved deviation angle tech-
nique [16] to 72.9 kt. In the North Pacific, using the same
deviation angle technique, Ritchie er al. [12] achieved the
RMSE of 14.3 kt. They also presented RMSE for different
categories such as the tropical depression, tropical storm, etc.
Our results indicate significant improvements with respect to
previous techniques [12], [16] for both the Atlantic and Pacific
regions. Not only overall RMSE values improved, but our
RMSE values are also better for each category. Table IX
shows the comparison of our method in terms of RMSE (kt)
with recent DAVT techniques [12], [16] across the Atlantic
and Pacific regions per category. This table also validates the
improvements of our method.

V. DISCUSSION
A. Misclassifications

Correctly classified hurricane images for all categories
are displayed in Figure 10. For example, in Figure 10 (h),
HS5 hurricane image is correctly classified HS with 58.26%
confidence. Figure 11 provides the images having the second
highest confidence with the correct label (2nd-hits). For exam-
ple, H2 hurricane in Figure 11 (e) is classified as H2 with the
second-highest confidence (41.37%).

Furthermore, Figure 12 shows misclassifications for each
category. These images do not fall under either top-1 or top-2
hits. Our model was unable to provide good classifications for
these images. Reaching conclusions based on these sample
images might be misleading. These results should be analyzed
along with Table VI that shows misclassifications into various
categories. It is always possible to misclassify with a close
category. The most important problem is why images are
classified into distant categories. For example, 14 H4 category
images are classified as TS. We do not use any temporal
information about categories, and the use of temporal
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)

(a) NC: [TD — 99.91]
INC — 0.08]

(b) TD: TS .32] (}:) Ts: [TD — 97.57] (d) H1: [TS = 67.59)
[TD — 45.68] [TS — 2.43] [H1 — 32.41]

n}‘
(f) H3: [H2 — 98.39] (g) H4: [H5 — 89.74] (h) H5: [H4 — 58.9]
[H3 — 1.38] [H4 — 10.26] [H5 — 37.58]

tg‘i
(e) H2: [H1 — 52.14]
[H2 — 41.37]

Fig. 11.

Images with 2nd-hits and their confidence.

False Negatives

[TS-->96.7] (c) [H1->97.93] (d) [H3--> 6131]
[H1->3.03] TS: [H2->133] HI: [H2-->23.06]

(@ [TD-->99.98] (b)
NC: [TS->001] TD:

[TS -->100.0] (f)
H2: [H1->00] H3:

(h) [H4-->99.71]

[H5->222] H4: [H3->3679] H5: [H3-->0.13]

Fig. 12. Misclassifications.

information could improve the accuracy. For example, we
did not use the classification of a storm in previous 6 hours
for the analysis. Use of such information would be helpful.
Adjusting deep CNN based on misclassifications is very
challenging as it is hard to interpret its model.

B. Limitations

1) Quality of Dataset: The main problem with training
was the quality of dataset. Images contain colored latitude-
longitude grids and coastlines. These grids and coastlines in
images act as noise and may complicate training. In addition,
the color of grids is not uniform throughout the dataset.
Hurricane MITCH in 1998 contains red grids whereas others
have yellow grids. This mismatch in color can affect the
training of the model. Additionally, we have lots of images
containing black patches (e.g., Figure 10 (g) and 10 (h)). These
patches do not carry any information about the hurricane and
may complicate the learning process.

2) Size of Dataset: The size of a dataset is a major concern
in any deep learning technique. We need a very large training
dataset to avoid overfitting and for better generalizability of
the model. We did interpolations and various transformations
to reach up to 25,863 images (Table IV) for training, but this
number is still not high for a deep learning process. It was hard
to collect a large number of images because best track data
(hurdat2) had information about images for every 6 hours.
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This massively restricted the number of images that can be
collected each day. There is also a substantial difference in
the number of images for each category. Hurricanes with the
intensity TS and TD are more likely to occur than hurricanes
of H4 and H5 leading to the skewness in the dataset. These
biases in the dataset may affect the accuracy of classification.

3) Hyperparameters: The performance of the model
depends on the architecture of the network. Parameters like
the number of convolutional layers, pooling layers, fully
connected layers, and the number of filters (kernels) used
in each layer affect training as well as testing. Due to the
limitation of hardware resources, we have used 5 convolutional
layers and 3 fully connected layers. Various minor adjustments
to the learning rate, the size of filters, stride, padding, etc.
may improve the accuracy. Refinement in regularization and
normalization are yet to be tested with different combinations
in this network. Hyperparameters from previous CNN tech-
niques [22], [25] are taken into consideration while building
our network. Future work should test with a different number
of layers and parameters. However, our current results are very
promising.

VI. CONCLUSION

In this paper, we presented a reliable and robust technique
for estimating the intensity of tropical cyclones using a deep
convolutional neural network. Deep network with multiple
convolutional and fully connected layers using regularization
techniques make the complex feature extraction task from
hurricane images effective. Estimating the intensity category
of new hurricane sample can be done in seconds with very
little human effort. Our model shows significant improvement
in both RMSE values and generalizability.

There are various small tasks that can improve the accuracy
and lower the RMSE intensity value in our method. First,
the colored grids and coastlines could be removed from the
training and test sets. It is also possible to use images without
grids and coastlines. In addition to that, removing black
patched images from our dataset might increase the overall
accuracy of our findings. It is always a good idea to use a
large training set for deep learning. Brightness and contrast
could be used in augmenting the dataset. Finally, as a deep
convolutional neural network is governed by several hyper-
parameters, increasing the number of convolutional and fully
connected layers, tweaking the parameters like regularization
and learning rate for further optimization might improve the
accuracy.
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