import os import argparse import collections import numpy as np import torch def process_files(args): all_predictions = collections.OrderedDict() all_labels = collections.OrderedDict() all_uid = collections.OrderedDict() for path in args.paths: path = os.path.join(path, args.prediction_name) try: data = torch.load(path) for dataset in data: name, d = dataset predictions, labels, uid = d if name not in all_predictions: all_predictions[name] = np.array(predictions) if args.labels is None: args.labels = [i for i in range(all_predictions[name].shape[1])] if args.eval: all_labels[name] = np.array(labels) all_uid[name] = np.array(uid) else: all_predictions[name] += np.array(predictions) assert np.allclose(all_uid[name], np.array(uid)) except Exception as e: print(e) continue return all_predictions, all_labels, all_uid def get_threshold(all_predictions, all_labels, one_threshold=False): if one_threshold: all_predictons = {'combined': np.concatenate(list(all_predictions.values()))} all_labels = {'combined': np.concatenate(list(all_predictions.labels()))} out_thresh = [] for dataset in all_predictions: preds = all_predictions[dataset] labels = all_labels[dataset] out_thresh.append(calc_threshold(preds, labels)) return out_thresh def calc_threshold(p, l): trials = [(i) * (1. / 100.) for i in range(100)] best_acc = float('-inf') best_thresh = 0 for t in trials: acc = ((apply_threshold(p, t).argmax(-1) == l).astype(float)).mean() if acc > best_acc: best_acc = acc best_thresh = t return best_thresh def apply_threshold(preds, t): assert (np.allclose(preds.sum(-1), np.ones(preds.shape[0]))) prob = preds[:, -1] thresholded = (prob >= t).astype(int) preds = np.zeros_like(preds) preds[np.arange(len(thresholded)), thresholded.reshape(-1)] = 1 return preds def threshold_predictions(all_predictions, threshold): if len(threshold) != len(all_predictions): threshold = [threshold[-1]] * (len(all_predictions) - len(threshold)) for i, dataset in enumerate(all_predictions): thresh = threshold[i] preds = all_predictions[dataset] all_predictions[dataset] = apply_threshold(preds, thresh) return all_predictions def postprocess_predictions(all_predictions, all_labels, args): for d in all_predictions: all_predictions[d] = all_predictions[d] / len(args.paths) if args.calc_threshold: args.threshold = get_threshold(all_predictions, all_labels, args.one_threshold) print('threshold', args.threshold) if args.threshold is not None: all_predictions = threshold_predictions(all_predictions, args.threshold) return all_predictions, all_labels def write_predictions(all_predictions, all_labels, all_uid, args): all_correct = 0 count = 0 for dataset in all_predictions: preds = all_predictions[dataset] preds = np.argmax(preds, -1) if args.eval: correct = (preds == all_labels[dataset]).sum() num = len(all_labels[dataset]) accuracy = correct / num count += num all_correct += correct accuracy = (preds == all_labels[dataset]).mean() print(accuracy) if not os.path.exists(os.path.join(args.outdir, dataset)): os.makedirs(os.path.join(args.outdir, dataset)) outpath = os.path.join( args.outdir, dataset, os.path.splitext( args.prediction_name)[0] + '.tsv') with open(outpath, 'w') as f: f.write('id\tlabel\n') f.write('\n'.join(str(uid) + '\t' + str(args.labels[p]) for uid, p in zip(all_uid[dataset], preds.tolist()))) if args.eval: print(all_correct / count) def ensemble_predictions(args): all_predictions, all_labels, all_uid = process_files(args) all_predictions, all_labels = postprocess_predictions(all_predictions, all_labels, args) write_predictions(all_predictions, all_labels, all_uid, args) def main(): parser = argparse.ArgumentParser() parser.add_argument('--paths', required=True, nargs='+', help='paths to checkpoint directories used in ensemble') parser.add_argument('--eval', action='store_true', help='compute accuracy metrics against labels (dev set)') parser.add_argument('--outdir', help='directory to place ensembled predictions in') parser.add_argument('--prediction-name', default='test_predictions.pt', help='name of predictions in checkpoint directories') parser.add_argument('--calc-threshold', action='store_true', help='calculate threshold classification') parser.add_argument('--one-threshold', action='store_true', help='use on threshold for all subdatasets') parser.add_argument('--threshold', nargs='+', default=None, type=float, help='user supplied threshold for classification') parser.add_argument('--labels', nargs='+', default=None, help='whitespace separated list of label names') args = parser.parse_args() ensemble_predictions(args) if __name__ == '__main__': main()