Tosin Akinwale Adesuyi 5552edc830 update 3 lat temu
..
English c583f460cf fixed review comments 3 lat temu
Dockerfile 5552edc830 update 3 lat temu
README.md 5552edc830 update 3 lat temu
Singularity 547a4fbfe8 Fixed Singualrity related problems 3 lat temu

README.md

openacc-training-materials

This repository contains mini applications for GPU Bootcamps. The objective of this Bootcamp is to provide insight into DeepStream performance optimization cycle. The lab will make use of NVIDIA Nsight System for profiling Nvidia DeepStream pipeline in a Intelligent Video Analytics Domain.

  • Introduction: Performance analysis
  • Lab 1: Performance Analysis using NVIDIA Nsight systems
  • Lab 2: COVID-19 Social Distancing Application plugin optimization

Target Audience:

The target audience for this bootcamp are NVIDIA DeepStream users and looking at understanding performance optimization cycle using profilers. Users are recommended to go through basic of DeepStream SDK if not already done.

Tutorial Duration

The overall lab should take approximate 3.5 hours.

Prerequisites

To run this tutorial you will need a machine with NVIDIA GPU.

Creating containers

To start with, you will have to build a Docker or Singularity container.

Docker Container

To build a docker container, run: sudo docker build --network=host -t <imagename>:<tagnumber> .

For instance: sudo docker build -t myimage:1.0 .

and to run the container, run: sudo docker run --rm -it --gpus=all --network=host -p 8888:8888 myimage:1.0

The container launches jupyter lab and runs on port 8888 jupyter-lab --ip 0.0.0.0 --port 8888 --no-browser --allow-root

Once inside the container launch the jupyter lab by typing the following command jupyter-lab --no-browser --allow-root --ip=0.0.0.0 --port=8888 --NotebookApp.token="" --notebook-dir=/opt/nvidia/deepstream/deepstream-5.0/python

Then, open the jupyter lab in browser: http://localhost:8888 Start working on the lab by clicking on the Start_Here.ipynb notebook.

Singularity Container

To build the singularity container, run: sudo singularity build --sandbox <image_name>.simg Singularity

and copy the files to your local machine to make sure changes are stored locally: singularity run --writable <image_name>.simg cp -rT /opt/nvidia/deepstream/deepstream-5.0/ ~/workspace

Then, run the container: singularity run --nv --writable <image_name>.simg jupyter-lab --no-browser --allow-root --ip=0.0.0.0 --port=8888 --NotebookApp.token="" --notebook-dir=~/workspace/python

Then, open the jupyter lab in browser: http://localhost:8888 Start working on the lab by clicking on the Start_Here.ipynb notebook.

Known issues

  • Please go through the list of exisiting bugs/issues or file a new issue at Github.