123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179 |
- #!/usr/bin/env python
- # coding: utf-8
- # %%
- import argparse
- import tensorflow as tf
- from tensorflow.keras.datasets import cifar10
- from tensorflow.keras.layers import Input, Add, Dense, Activation, ZeroPadding2D, BatchNormalization, Flatten, Conv2D, AveragePooling2D, MaxPooling2D, GlobalMaxPooling2D
- from tensorflow.keras.models import Model, load_model
- from tensorflow.keras.preprocessing import image
- from tensorflow.keras.applications.imagenet_utils import preprocess_input
- from tensorflow.keras import backend as K
- from tensorflow.keras.initializers import glorot_uniform
- import horovod.tensorflow.keras as hvd
- import sys
- import time
- def parse_args():
- parser = argparse.ArgumentParser()
- parser.add_argument("--batch-size", type=int, default=256, help="Batch size")
- args = parser.parse_args()
- return args
- args = parse_args()
- global g_args
- g_args = args
- batch_size = args.batch_size
- # Horovod: initialize Horovod.
- hvd.init()
- # Horovod: pin GPU to be used to process local rank (one GPU per process)
- gpus = tf.config.experimental.list_physical_devices('GPU')
- for gpu in gpus:
- tf.config.experimental.set_memory_growth(gpu, True)
- if gpus:
- tf.config.experimental.set_visible_devices(gpus[hvd.local_rank()], 'GPU')
- (images, labels), _ = tf.keras.datasets.cifar10.load_data()
- dataset = tf.data.Dataset.from_tensor_slices(
- (tf.cast(images[...] / 255.0, tf.float32),
- tf.cast(labels, tf.int64))
- )
- dataset = dataset.repeat().shuffle(10000).batch(batch_size)
- def convolutional_block(X, f, filters, stage, block, s=2):
- # Defining name basis
- conv_name_base = 'res' + str(stage) + block + '_branch'
- bn_name_base = 'bn' + str(stage) + block + '_branch'
- # Retrieve Filters
- F1, F2, F3 = filters
- # Save the input value
- X_shortcut = X
- ##### MAIN PATH #####
- # First component of main path
- X = Conv2D(filters=F1, kernel_size=(1, 1), strides=(s, s), padding='valid', name=conv_name_base + '2a', kernel_initializer=glorot_uniform(seed=0))(X)
- X = BatchNormalization(axis=3, name=bn_name_base + '2a')(X)
- X = Activation('relu')(X)
- # Second component of main path
- X = Conv2D(filters=F2, kernel_size=(f, f), strides=(1, 1), padding='same', name=conv_name_base + '2b', kernel_initializer=glorot_uniform(seed=0))(X)
- X = BatchNormalization(axis=3, name=bn_name_base + '2b')(X)
- X = Activation('relu')(X)
- # Third component of main path
- X = Conv2D(filters=F3, kernel_size=(1, 1), strides=(1, 1), padding='valid', name=conv_name_base + '2c', kernel_initializer=glorot_uniform(seed=0))(X)
- X = BatchNormalization(axis=3, name=bn_name_base + '2c')(X)
- ##### SHORTCUT PATH ####
- X_shortcut = Conv2D(filters=F3, kernel_size=(1, 1), strides=(s, s), padding='valid', name=conv_name_base + '1', kernel_initializer=glorot_uniform(seed=0))(X_shortcut)
- X_shortcut = BatchNormalization(axis=3, name=bn_name_base + '1')(X_shortcut)
- # Final step: Add shortcut value to main path, and pass it through a RELU activation
- X = Add()([X, X_shortcut])
- X = Activation('relu')(X)
- return X
- def ResNet(input_shape = (28, 28, 1), classes = 10):
-
- # Define the input as a tensor with shape input_shape
- X_input = Input(shape=input_shape)
-
- # Zero-Padding
- X = ZeroPadding2D((3, 3))(X_input)
-
- # Stage 1
- X = Conv2D(64, (7, 7), strides = (2, 2), name = 'conv1', kernel_initializer = glorot_uniform(seed=0))(X)
- X = BatchNormalization(axis = 3, name = 'bn_conv1')(X)
- X = Activation('relu')(X)
- X = MaxPooling2D((3, 3), strides=(2, 2))(X)
- # Stage 2
- X = convolutional_block(X, f = 3, filters = [64, 64, 256], stage = 2, block='a', s = 1)
- # Stage 3
- X = convolutional_block(X, f=3, filters=[128, 128, 512], stage=3, block='a', s=2)
- # AVGPOOL
- X = AveragePooling2D(pool_size=(2,2), padding='same')(X)
- # Output layer
- X = Flatten()(X)
- X = Dense(classes, activation='softmax', name='fc' + str(classes), kernel_initializer = glorot_uniform(seed=0))(X)
-
-
- # Create model
- model = Model(inputs = X_input, outputs = X, name='ResNet')
- return model
- model = ResNet(input_shape = (32, 32, 3), classes = 10)
- # %%
- # Horovod: adjust learning rate based on number of GPUs.
- scaled_lr = 0.001 * hvd.size()
- # opt = tf.optimizers.Adam(scaled_lr)
- from tensorflow_addons.optimizers import LAMB
- # Replace the Adam optimizer with NovoGrad:
- opt = LAMB(learning_rate=scaled_lr)
- # Horovod: add Horovod DistributedOptimizer.
- opt = hvd.DistributedOptimizer(
- opt, backward_passes_per_step=1, average_aggregated_gradients=True)
- # Horovod: Specify `experimental_run_tf_function=False` to ensure TensorFlow
- # uses hvd.DistributedOptimizer() to compute gradients.
- model.compile(loss=tf.losses.SparseCategoricalCrossentropy(),
- optimizer=opt,
- metrics=['accuracy'],
- experimental_run_tf_function=False)
- class PrintLR(tf.keras.callbacks.Callback):
- def __init__(self, total_images=0):
- self.total_images = total_images
- def on_epoch_begin(self, epoch, logs=None):
- self.epoch_start_time = time.time()
- def on_epoch_end(self, epoch, logs=None):
- if hvd.rank() == 0 :
- epoch_time = time.time() - self.epoch_start_time
- print('Epoch time : {}'.format(epoch_time))
- images_per_sec = round(self.total_images / epoch_time, 2)
- print('Images/sec: {}'.format(images_per_sec))
-
- callbacks = [
- # Horovod: broadcast initial variable states from rank 0 to all other processes.
- # This is necessary to ensure consistent initialization of all workers when
- # training is started with random weights or restored from a checkpoint.
- hvd.callbacks.BroadcastGlobalVariablesCallback(0),
- # Horovod: average metrics among workers at the end of every epoch.
- #
- # Note: This callback must be in the list before the ReduceLROnPlateau,
- # TensorBoard or other metrics-based callbacks.
- hvd.callbacks.MetricAverageCallback(),
- PrintLR(total_images=len(labels)),
- hvd.callbacks.LearningRateWarmupCallback(initial_lr=scaled_lr, warmup_epochs=3, verbose=1),
- ]
- # model.summary()
- # Horovod: write logs on worker 0.
- verbose = 1 if hvd.rank() == 0 else 0
- # Train the model.
- # Horovod: adjust number of steps based on number of GPUs.
- model.fit(dataset, steps_per_epoch=len(labels) // (batch_size*hvd.size()), callbacks=callbacks, epochs=20, verbose=verbose)
|