| 12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394 | import cudfimport osimport pandas as pdimport urllibimport tqdmfrom zipfile import ZipFile pbar = Nonedef show_progress(block_num, block_size, total_size):    global pbar    if pbar is None:        pbar = tqdm.tqdm(total=total_size / 1024, unit='kB')    downloaded = block_num * block_size    if downloaded < total_size:        pbar.update(block_size / 1024)    else:        pbar.close()        pbar = None        def fetch_bike_dataset(years, data_dir="data"):    """ Dowload bike dataset for a given year and return the list of files.    """    base_url = "https://s3.amazonaws.com/capitalbikeshare-data/"    files = []    for year in years:        filename = str(year) + "-capitalbikeshare-tripdata.zip"        filepath = os.path.join(data_dir, filename)        if not os.path.isfile(filepath):            urllib.request.urlretrieve(base_url+filename, filepath, reporthook=show_progress)        with ZipFile(filepath) as myzip:            files += [os.path.join(data_dir, name) for name in myzip.namelist()]            myzip.extractall(data_dir)        print("Files extracted: "+ str(files))    return filesdef fetch_weather_dataset(data_dir='data'):    base_url = 'https://archive.ics.uci.edu/ml/machine-learning-databases/00275/'    fn = 'Bike-Sharing-Dataset.zip'        if not os.path.isdir(data_dir):        os.makedirs(data_dir)    filepath = os.path.join(data_dir, fn)            if not os.path.isfile(filepath):        print(f'Downloading {base_url+fn} to {filepath}')        urllib.request.urlretrieve(base_url+fn, filepath)        files = []    with ZipFile(filepath) as myzip:        files = [os.path.join(data_dir, name) for name in myzip.namelist()]        myzip.extractall(data_dir)        # Extract weather features from the dataset    # Note this weather dataset is already preprocessed.    # We reverse the steps to provide a more interesting exercise.    weather = cudf.read_csv(files[2], parse_dates=[1])    out = cudf.DataFrame();    out['Hour'] = weather['dteday'] + cudf.Series(pd.to_timedelta(weather['hr'].to_pandas(), unit='h'))    out['Temperature'] = weather['temp'] * 47.0 -8    out['Relative Temperature'] = weather['atemp'] * 66.0 - 16    out['Rel. humidity'] = (weather['hum'] * 100).astype('int')    out['Wind'] = weather['windspeed'] * 67        # Spell out weather categories    # - 1: Clear, Few clouds, Partly cloudy, Partly cloudy    #- 2: Mist + Cloudy, Mist + Broken clouds, Mist + Few clouds, Mist    #- 3: Light Snow, Light Rain + Thunderstorm + Scattered clouds, Light Rain + Scattered clouds    # - 4: Heavy Rain + Ice Pallets + Thunderstorm + Mist, Snow + Fog     out['Weather'] = 'Clear or Partly cloudy'    out['Weather'][weather['weathersit']==2] = 'Mist or Cloudy'    out['Weather'][weather['weathersit']==3] = 'Light Rain or Snow, Thunderstorm'    out['Weather'][weather['weathersit']==4] = 'Heavy Rain, Snow + Fog, Ice'        filepath = os.path.join(data_dir, 'weather2011-2012.csv')    out.to_csv(filepath, index=False)    print("Weather file saved at ", filepath)    return filepathdef read_bike_data_pandas(files):    # Reads a list of files and concatenates them    tables = []    for filename in files:        tmp_df = pd.read_csv(filename, usecols=[1], parse_dates=['Start date'])        tables.append(tmp_df)    merged_df = pd.concat(tables, ignore_index=True)
 |