123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127 |
- # coding=utf-8
- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Pretrain GPT"""
- import torch
- from functools import partial
- from megatron import get_args
- from megatron import print_rank_0
- from megatron import get_timers
- from megatron import get_tokenizer
- from megatron import mpu
- from megatron.data.gpt_dataset import build_train_valid_test_datasets
- from megatron.model import GPTModel
- from megatron.training import pretrain
- from megatron.utils import get_ltor_masks_and_position_ids
- from megatron.utils import average_losses_across_data_parallel_group
- import pyprof
- pyprof.init(enable_function_stack=True)
- def model_provider(pre_process=True, post_process=True):
- """Build the model."""
- print_rank_0('building GPT model ...')
- model = GPTModel(
- num_tokentypes=0,
- parallel_output=True,
- pre_process=pre_process,
- post_process=post_process
- )
- return model
- def get_batch(data_iterator):
- """Generate a batch"""
- args = get_args()
- tokenizer = get_tokenizer()
- # Items and their type.
- keys = ['text']
- datatype = torch.int64
- # Broadcast data.
- if data_iterator is not None:
- data = next(data_iterator)
- else:
- data = None
- data_b = mpu.broadcast_data(keys, data, datatype)
- # Unpack.
- tokens_ = data_b['text'].long()
- labels = tokens_[:, 1:].contiguous()
- tokens = tokens_[:, :-1].contiguous()
- # Get the masks and postition ids.
- attention_mask, loss_mask, position_ids = get_ltor_masks_and_position_ids(
- tokens,
- tokenizer.eod,
- args.reset_position_ids,
- args.reset_attention_mask,
- args.eod_mask_loss)
- return tokens, labels, loss_mask, attention_mask, position_ids
- def loss_func(loss_mask, output_tensor):
- losses = output_tensor.float()
- loss_mask = loss_mask.view(-1).float()
- loss = torch.sum(losses.view(-1) * loss_mask) / loss_mask.sum()
- # Reduce loss for logging.
- averaged_loss = average_losses_across_data_parallel_group([loss])
- return loss, {'lm loss': averaged_loss[0]}
- def forward_step(data_iterator, model):
- """Forward step."""
- args = get_args()
- timers = get_timers()
- # Get the batch.
- timers('batch-generator').start()
- tokens, labels, loss_mask, attention_mask, position_ids = get_batch(
- data_iterator)
- timers('batch-generator').stop()
- output_tensor = model(tokens, position_ids, attention_mask,
- labels=labels)
- return output_tensor, partial(loss_func, loss_mask)
- def train_valid_test_datasets_provider(train_val_test_num_samples):
- """Build train, valid, and test datasets."""
- args = get_args()
- print_rank_0('> building train, validation, and test datasets '
- 'for GPT ...')
- train_ds, valid_ds, test_ds = build_train_valid_test_datasets(
- data_prefix=args.data_path,
- data_impl=args.data_impl,
- splits_string=args.split,
- train_valid_test_num_samples=train_val_test_num_samples,
- seq_length=args.seq_length,
- seed=args.seed,
- skip_warmup=(not args.mmap_warmup))
- print_rank_0("> finished creating GPT datasets ...")
- return train_ds, valid_ds, test_ds
- if __name__ == "__main__":
- with torch.autograd.profiler.emit_nvtx():
- pretrain(train_valid_test_datasets_provider, model_provider, forward_step,
- args_defaults={'tokenizer_type': 'GPT2BPETokenizer'})
|