123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165 |
- # coding=utf-8
- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Learning rate decay functions."""
- import math
- from megatron import print_rank_0
- class AnnealingLR(object):
- """Anneals the learning rate."""
- def __init__(self, optimizer, max_lr, min_lr,
- warmup_steps, decay_steps, decay_style,
- use_checkpoint_lr_scheduler=True,
- override_lr_scheduler=False):
- # Class values.
- self.optimizer = optimizer
- self.max_lr = float(max_lr)
- self.min_lr = min_lr
- assert self.min_lr >= 0.0
- assert self.max_lr >= self.min_lr
- self.warmup_steps = warmup_steps
- self.num_steps = 0
- self.decay_steps = decay_steps
- assert self.decay_steps > 0
- assert self.warmup_steps < self.decay_steps
- self.decay_style = decay_style
- self.override_lr_scheduler = override_lr_scheduler
- self.use_checkpoint_lr_scheduler = use_checkpoint_lr_scheduler
- if self.override_lr_scheduler:
- assert not self.use_checkpoint_lr_scheduler, 'both override and '\
- 'use-checkpoint are set.'
- # Set the learning rate
- self.step(0)
- print_rank_0('> learning rate decay style: {}'.format(self.decay_style))
- def get_lr(self):
- """Learning rate decay functions from:
- https://openreview.net/pdf?id=BJYwwY9ll pg. 4"""
- # Use linear warmup for the initial part.
- if self.warmup_steps > 0 and self.num_steps <= self.warmup_steps:
- return self.max_lr * float(self.num_steps) / \
- float(self.warmup_steps)
- # If the learning rate is constant, just return the initial value.
- if self.decay_style == 'constant':
- return self.max_lr
- # For any steps larger than `self.decay_steps`, use `self.min_lr`.
- if self.num_steps > self.decay_steps:
- return self.min_lr
-
- # If we are done with the warmup period, use the decay style.
- num_steps_ = self.num_steps - self.warmup_steps
- decay_steps_ = self.decay_steps - self.warmup_steps
- decay_ratio = float(num_steps_) / float(decay_steps_)
- assert decay_ratio >= 0.0
- assert decay_ratio <= 1.0
- delta_lr = self.max_lr - self.min_lr
- if self.decay_style == 'linear':
- coeff = (1.0 - decay_ratio)
- elif self.decay_style == 'cosine':
- coeff = 0.5 * (math.cos(math.pi * decay_ratio) + 1.0)
- else:
- raise Exception('{} decay style is not supported.'.format(
- self.decay_style))
- return self.min_lr + coeff * delta_lr
- def step(self, increment):
- """Set lr for all parameters groups."""
- self.num_steps += increment
- new_lr = self.get_lr()
- for group in self.optimizer.param_groups:
- group['lr'] = new_lr
- def state_dict(self):
- state_dict = {
- 'max_lr': self.max_lr,
- 'warmup_steps': self.warmup_steps,
- 'num_steps': self.num_steps,
- 'decay_style': self.decay_style,
- 'decay_steps': self.decay_steps,
- 'min_lr': self.min_lr
- }
- return state_dict
- def _check_and_set(self, cls_value, sd_value, name):
- """Auxiliary function for checking the values in the checkpoint and
- setting them."""
- if self.override_lr_scheduler:
- print_rank_0(' > overriding {} value to {}'.format(name, cls_value))
- return cls_value
- if not self.use_checkpoint_lr_scheduler:
- assert cls_value == sd_value, \
- f'AnnealingLR: class input value {cls_value} and checkpoint' \
- f'value {sd_value} for {name} do not match'
- print_rank_0(' > using checkpoint value {} for {}'.format(sd_value,
- name))
- return sd_value
- def load_state_dict(self, sd):
- if 'start_lr' in sd:
- max_lr_ = sd['start_lr']
- else:
- max_lr_ = sd['max_lr']
- self.max_lr = self._check_and_set(self.max_lr, max_lr_,
- 'learning rate')
-
- self.min_lr = self._check_and_set(self.min_lr, sd['min_lr'],
- 'minimum learning rate')
- if 'warmup_iter' in sd:
- warmup_steps_ = sd['warmup_iter']
- else:
- warmup_steps_ = sd['warmup_steps']
- self.warmup_steps = self._check_and_set(self.warmup_steps,
- warmup_steps_,
- 'warmup iterations')
- if 'end_iter' in sd:
- decay_steps_ = sd['end_iter']
- else:
- decay_steps_ = sd['decay_steps']
- self.decay_steps = self._check_and_set(self.decay_steps, decay_steps_,
- 'total number of iterations')
- self.decay_style = self._check_and_set(self.decay_style,
- sd['decay_style'],
- 'decay style')
- if 'num_iters' in sd:
- num_steps = sd['num_iters']
- else:
- num_steps = sd['num_steps']
- self.step(increment=num_steps)
|