12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667 |
- # coding=utf-8
- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Utilities for models."""
- import math
- import torch
- from megatron import get_args
- def init_method_normal(sigma):
- """Init method based on N(0, sigma)."""
- def init_(tensor):
- return torch.nn.init.normal_(tensor, mean=0.0, std=sigma)
- return init_
- def scaled_init_method_normal(sigma, num_layers):
- """Init method based on N(0, sigma/sqrt(2*num_layers)."""
- std = sigma / math.sqrt(2.0 * num_layers)
- def init_(tensor):
- return torch.nn.init.normal_(tensor, mean=0.0, std=std)
- return init_
- def attention_mask_func(attention_scores, attention_mask):
- attention_scores.masked_fill_(attention_mask, -10000.0)
- return attention_scores
- def get_linear_layer(rows, columns, init_method):
- """Simple linear layer with weight initialization."""
- layer = torch.nn.Linear(rows, columns)
- init_method(layer.weight)
- with torch.no_grad():
- layer.bias.zero_()
- return layer
- @torch.jit.script
- def gelu_impl(x):
- """OpenAI's gelu implementation."""
- return 0.5 * x * (1.0 + torch.tanh(0.7978845608028654 * x *
- (1.0 + 0.044715 * x * x)))
- def openai_gelu(x):
- return gelu_impl(x)
- #This is actually Python equivalent of torch.nn.functional.gelu(), also with type hints for ONNX exporter
- @torch.jit.script
- def erf_gelu(x):
- return x * 0.5 * (torch.erf(x / 1.41421).to(dtype=x.dtype)+torch.ones_like(x).to(dtype=x.dtype))
|