123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204 |
- # coding=utf-8
- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Processing data for pretraining."""
- import argparse
- import json
- import multiprocessing
- import os
- import sys
- sys.path.append(os.path.abspath(os.path.join(os.path.dirname(__file__),
- os.path.pardir)))
- import time
- import torch
- try:
- import nltk
- nltk_available = True
- except ImportError:
- nltk_available = False
- from megatron.tokenizer import build_tokenizer
- from megatron.data import indexed_dataset
- # https://stackoverflow.com/questions/33139531/preserve-empty-lines-with-nltks-punkt-tokenizer
- class CustomLanguageVars(nltk.tokenize.punkt.PunktLanguageVars):
- _period_context_fmt = r"""
- \S* # some word material
- %(SentEndChars)s # a potential sentence ending
- \s* # <-- THIS is what I changed
- (?=(?P<after_tok>
- %(NonWord)s # either other punctuation
- |
- (?P<next_tok>\S+) # <-- Normally you would have \s+ here
- ))"""
- class IdentitySplitter(object):
- def tokenize(self, *text):
- return text
- class Encoder(object):
- def __init__(self, args):
- self.args = args
- def initializer(self):
- # Use Encoder class as a container for global data
- Encoder.tokenizer = build_tokenizer(self.args)
- if self.args.split_sentences:
- if not nltk_available:
- print("NLTK is not available to split sentences.")
- exit()
- splitter = nltk.load("tokenizers/punkt/english.pickle")
- if self.args.keep_newlines:
- # this prevents punkt from eating newlines after sentences
- Encoder.splitter = nltk.tokenize.punkt.PunktSentenceTokenizer(
- train_text = splitter._params,
- lang_vars = CustomLanguageVars())
- else:
- Encoder.splitter = splitter
- else:
- Encoder.splitter = IdentitySplitter()
- def encode(self, json_line):
- data = json.loads(json_line)
- ids = {}
- for key in self.args.json_keys:
- text = data[key]
- doc_ids = []
- for sentence in Encoder.splitter.tokenize(text):
- sentence_ids = Encoder.tokenizer.tokenize(sentence)
- if len(sentence_ids) > 0:
- doc_ids.append(sentence_ids)
- if len(doc_ids) > 0 and self.args.append_eod:
- doc_ids[-1].append(Encoder.tokenizer.eod)
- ids[key] = doc_ids
- return ids, len(json_line)
- def get_args():
- parser = argparse.ArgumentParser()
- group = parser.add_argument_group(title='input data')
- group.add_argument('--input', type=str, required=True,
- help='Path to input JSON')
- group.add_argument('--json-keys', nargs='+', default=['text'],
- help='space separate listed of keys to extract from json')
- group.add_argument('--split-sentences', action='store_true',
- help='Split documents into sentences.')
- group.add_argument('--keep-newlines', action='store_true',
- help='Keep newlines between sentences when splitting.')
- group = parser.add_argument_group(title='tokenizer')
- group.add_argument('--tokenizer-type', type=str, required=True,
- choices=['BertWordPieceLowerCase','BertWordPieceCase',
- 'GPT2BPETokenizer'],
- help='What type of tokenizer to use.')
- group.add_argument('--vocab-file', type=str, default=None,
- help='Path to the vocab file')
- group.add_argument('--merge-file', type=str, default=None,
- help='Path to the BPE merge file (if necessary).')
- group.add_argument('--append-eod', action='store_true',
- help='Append an <eod> token to the end of a document.')
- group = parser.add_argument_group(title='output data')
- group.add_argument('--output-prefix', type=str, required=True,
- help='Path to binary output file without suffix')
- group.add_argument('--dataset-impl', type=str, default='mmap',
- choices=['lazy', 'cached', 'mmap'])
- group = parser.add_argument_group(title='runtime')
- group.add_argument('--workers', type=int, default=1,
- help='Number of worker processes to launch')
- group.add_argument('--log-interval', type=int, default=100,
- help='Interval between progress updates')
- args = parser.parse_args()
- args.keep_empty = False
- if args.tokenizer_type.lower().startswith('bert'):
- if not args.split_sentences:
- print("Bert tokenizer detected, are you sure you don't want to split sentences?")
- # some default/dummy values for the tokenizer
- args.rank = 0
- args.make_vocab_size_divisible_by = 128
- args.tensor_model_parallel_size = 1
- args.vocab_extra_ids = 0
- return args
- def main():
- args = get_args()
- startup_start = time.time()
- print("Opening", args.input)
- fin = open(args.input, 'r', encoding='utf-8')
- if nltk_available and args.split_sentences:
- nltk.download("punkt", quiet=True)
- encoder = Encoder(args)
- tokenizer = build_tokenizer(args)
- pool = multiprocessing.Pool(args.workers, initializer=encoder.initializer)
- encoded_docs = pool.imap(encoder.encode, fin, 25)
- #encoded_docs = map(encoder.encode, fin)
- level = "document"
- if args.split_sentences:
- level = "sentence"
- print(f"Vocab size: {tokenizer.vocab_size}")
- print(f"Output prefix: {args.output_prefix}")
- output_bin_files = {}
- output_idx_files = {}
- builders = {}
- for key in args.json_keys:
- output_bin_files[key] = "{}_{}_{}.bin".format(args.output_prefix,
- key, level)
- output_idx_files[key] = "{}_{}_{}.idx".format(args.output_prefix,
- key, level)
- builders[key] = indexed_dataset.make_builder(output_bin_files[key],
- impl=args.dataset_impl,
- vocab_size=tokenizer.vocab_size)
- startup_end = time.time()
- proc_start = time.time()
- total_bytes_processed = 0
- print("Time to startup:", startup_end - startup_start)
- for i, (doc, bytes_processed) in enumerate(encoded_docs, start=1):
- total_bytes_processed += bytes_processed
- for key, sentences in doc.items():
- if len(sentences) == 0:
- continue
- for sentence in sentences:
- builders[key].add_item(torch.IntTensor(sentence))
- builders[key].end_document()
- if i % args.log_interval == 0:
- current = time.time()
- elapsed = current - proc_start
- mbs = total_bytes_processed/elapsed/1024/1024
- print(f"Processed {i} documents",
- f"({i/elapsed} docs/s, {mbs} MB/s).",
- file=sys.stderr)
- for key in args.json_keys:
- builders[key].finalize(output_idx_files[key])
- if __name__ == '__main__':
- main()
|