classification_spec.cfg 1.2 KB

12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455
  1. model_config {
  2. arch: "resnet",
  3. n_layers: 18
  4. # Setting these parameters to true to match the template downloaded from NGC.
  5. use_batch_norm: true
  6. all_projections: true
  7. freeze_blocks: 0
  8. freeze_blocks: 1
  9. input_image_size: "3,224,224"
  10. }
  11. train_config {
  12. train_dataset_path: "/workspace/tlt-experiments/data/split/train"
  13. val_dataset_path: "/workspace/tlt-experiments/data/split/val"
  14. pretrained_model_path: "/workspace/tlt-experiments/classification/pretrained_resnet18/tlt_pretrained_classification_vresnet18/resnet_18.hdf5"
  15. optimizer {
  16. sgd {
  17. lr: 0.01
  18. decay: 0.0
  19. momentum: 0.9
  20. nesterov: False
  21. }
  22. }
  23. batch_size_per_gpu: 64
  24. n_epochs: 2
  25. n_workers: 16
  26. preprocess_mode: "caffe"
  27. enable_random_crop: True
  28. enable_center_crop: True
  29. label_smoothing: 0.0
  30. mixup_alpha: 0.1
  31. # regularizer
  32. reg_config {
  33. type: "L2"
  34. scope: "Conv2D,Dense"
  35. weight_decay: 0.00005
  36. }
  37. # learning_rate
  38. lr_config {
  39. step {
  40. learning_rate: 0.006
  41. step_size: 10
  42. gamma: 0.1
  43. }
  44. }
  45. }
  46. eval_config {
  47. eval_dataset_path: "/workspace/tlt-experiments/data/split/test"
  48. model_path: "/workspace/tlt-experiments/classification/output/weights/resnet_080.tlt"
  49. top_k: 3
  50. batch_size: 256
  51. n_workers: 8
  52. enable_center_crop: True
  53. }