Bharat Kumar 42cab2b4cd Fixed the download links for profiler and zip files | 3 år sedan | |
---|---|---|
.. | ||
English | 3 år sedan | |
Dockerfile | 3 år sedan | |
README.md | 3 år sedan | |
Singularity | 3 år sedan |
This repository contains mini applications for GPU Bootcamps. The objective of this Bootcamp is to provide insight into DeepStream performance optimization cycle. The lab will make use of NVIDIA Nsight System for profiling Nvidia DeepStream pipeline in a Intelligent Video Analytics Domain.
The target audience for this bootcamp are NVIDIA DeepStream users and looking at understanding performance optimization cycle using profilers. Users are recommended to go through basic of DeepStream SDK if not already done.
The overall lab should take approximate 3.5 hours.
To run this tutorial you will need a machine with NVIDIA GPU.
Install the latest Docker or Singularity.
Install Nvidia toolkit, Nsight Systems (latest version).
The base containers required for the lab may require users to create a NGC account and generate an API key (https://docs.nvidia.com/ngc/ngc-catalog-user-guide/index.html#registering-activating-ngc-account)
To start with, you will have to build a Docker or Singularity container.
To build a docker container, run:
sudo docker build --network=host -t <imagename>:<tagnumber> .
For instance:
sudo docker build -t myimage:1.0 .
and to run the container, run:
sudo docker run --rm -it --gpus=all --network=host -p 8888:8888 myimage:1.0
The container launches jupyter lab and runs on port 8888
jupyter-lab --ip 0.0.0.0 --port 8888 --no-browser --allow-root
Once inside the container launch the jupyter lab by typing the following command
jupyter-lab --no-browser --allow-root --ip=0.0.0.0 --port=8888 --NotebookApp.token="" --notebook-dir=/opt/nvidia/deepstream/deepstream-5.0/python
Then, open the jupyter lab in browser: http://localhost:8888
Start working on the lab by clicking on the Start_Here.ipynb
notebook.
To build the singularity container, run:
sudo singularity build --sandbox <image_name>.simg Singularity
and copy the files to your local machine to make sure changes are stored locally:
singularity run --writable <image_name>.simg cp -rT /opt/nvidia/deepstream/deepstream-5.0/ ~/workspace
Then, run the container:
singularity run --nv --writable <image_name>.simg jupyter-lab --no-browser --allow-root --ip=0.0.0.0 --port=8888 --NotebookApp.token="" --notebook-dir=~/workspace/python
Then, open the jupyter lab in browser: http://localhost:8888
Start working on the lab by clicking on the Start_Here.ipynb
notebook.