123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356357358359360361362363364365366367368369370371372373374375376377378379380381382383384385386387388389390391392393394395396397398399400401402403404405406407408409410411412413414415416417418419420421422423424425426427428429430431432433434435436437438439440441442443444445446447448449450451452453454455456457458459460461462463464465466467468469470471472473474475476477478479480481482483484485486487488489490491492493494495496497498499500501502503504505506507508509510511512513514515516517518519520521522523524525526527528529530531532533534535536537538539540541542543544545546547548549550551552553554555556557558559560561562563564565566567568569570571572573574575576577578579580581582583584585586587588589590591592593594595596597598599600601602603604605606607608609610611612613614615616617618619620621622623624625626627628629630631632633634635636637638639640641642643644645646647648649650 |
- //////////////////////////////////////////////////////////////////////////////////////////
- // miniWeather
- // Author: Matt Norman <normanmr@ornl.gov> , Oak Ridge National Laboratory
- // This code simulates dry, stratified, compressible, non-hydrostatic fluid flows
- // For documentation, please see the attached documentation in the "documentation" folder
- //////////////////////////////////////////////////////////////////////////////////////////
- /*
- ** Copyright (c) 2018, National Center for Computational Sciences, Oak Ridge National Laboratory. All rights reserved.
- **
- ** Portions Copyright (c) 2020, NVIDIA Corporation. All rights reserved.
- */
- #include <stdlib.h>
- #include <math.h>
- #include <stdio.h>
- #include <nvtx3/nvToolsExt.h>
- const double pi = 3.14159265358979323846264338327; //Pi
- const double grav = 9.8; //Gravitational acceleration (m / s^2)
- const double cp = 1004.; //Specific heat of dry air at constant pressure
- const double rd = 287.; //Dry air constant for equation of state (P=rho*rd*T)
- const double p0 = 1.e5; //Standard pressure at the surface in Pascals
- const double C0 = 27.5629410929725921310572974482; //Constant to translate potential temperature into pressure (P=C0*(rho*theta)**gamma)
- const double gamm = 1.40027894002789400278940027894; //gamma=cp/Rd , have to call this gamm because "gamma" is taken (I hate C so much)
- //Define domain and stability-related constants
- const double xlen = 2.e4; //Length of the domain in the x-direction (meters)
- const double zlen = 1.e4; //Length of the domain in the z-direction (meters)
- const double hv_beta = 0.25; //How strong to diffuse the solution: hv_beta \in [0:1]
- const double cfl = 1.50; //"Courant, Friedrichs, Lewy" number (for numerical stability)
- const double max_speed = 450; //Assumed maximum wave speed during the simulation (speed of sound + speed of wind) (meter / sec)
- const int hs = 2; //"Halo" size: number of cells needed for a full "stencil" of information for reconstruction
- const int sten_size = 4; //Size of the stencil used for interpolation
- //Parameters for indexing and flags
- const int NUM_VARS = 4; //Number of fluid state variables
- const int ID_DENS = 0; //index for density ("rho")
- const int ID_UMOM = 1; //index for momentum in the x-direction ("rho * u")
- const int ID_WMOM = 2; //index for momentum in the z-direction ("rho * w")
- const int ID_RHOT = 3; //index for density * potential temperature ("rho * theta")
- const int DIR_X = 1; //Integer constant to express that this operation is in the x-direction
- const int DIR_Z = 2; //Integer constant to express that this operation is in the z-direction
- const int nqpoints = 3;
- double qpoints[] = {0.112701665379258311482073460022E0, 0.500000000000000000000000000000E0, 0.887298334620741688517926539980E0};
- double qweights[] = {0.277777777777777777777777777779E0, 0.444444444444444444444444444444E0, 0.277777777777777777777777777779E0};
- ///////////////////////////////////////////////////////////////////////////////////////
- // Variables that are initialized but remain static over the course of the simulation
- ///////////////////////////////////////////////////////////////////////////////////////
- double sim_time; //total simulation time in seconds
- double output_freq; //frequency to perform output in seconds
- double dt; //Model time step (seconds)
- int nx, nz; //Number of local grid cells in the x- and z- dimensions
- double dx, dz; //Grid space length in x- and z-dimension (meters)
- int nx_glob, nz_glob; //Number of total grid cells in the x- and z- dimensions
- int i_beg, k_beg; //beginning index in the x- and z-directions
- int nranks, myrank; //my rank id
- int left_rank, right_rank; //Rank IDs that exist to my left and right in the global domain
- double *hy_dens_cell; //hydrostatic density (vert cell avgs). Dimensions: (1-hs:nz+hs)
- double *hy_dens_theta_cell; //hydrostatic rho*t (vert cell avgs). Dimensions: (1-hs:nz+hs)
- double *hy_dens_int; //hydrostatic density (vert cell interf). Dimensions: (1:nz+1)
- double *hy_dens_theta_int; //hydrostatic rho*t (vert cell interf). Dimensions: (1:nz+1)
- double *hy_pressure_int; //hydrostatic press (vert cell interf). Dimensions: (1:nz+1)
- ///////////////////////////////////////////////////////////////////////////////////////
- // Variables that are dynamics over the course of the simulation
- ///////////////////////////////////////////////////////////////////////////////////////
- double etime; //Elapsed model time
- double output_counter; //Helps determine when it's time to do output
- //Runtime variable arrays
- double *state; //Fluid state. Dimensions: (1-hs:nx+hs,1-hs:nz+hs,NUM_VARS)
- double *state_tmp; //Fluid state. Dimensions: (1-hs:nx+hs,1-hs:nz+hs,NUM_VARS)
- double *flux; //Cell interface fluxes. Dimensions: (nx+1,nz+1,NUM_VARS)
- double *tend; //Fluid state tendencies. Dimensions: (nx,nz,NUM_VARS)
- int num_out = 0; //The number of outputs performed so far
- int direction_switch = 1;
- //How is this not in the standard?!
- double dmin(double a, double b)
- {
- if (a < b)
- {
- return a;
- }
- else
- {
- return b;
- }
- };
- //Declaring the functions defined after "main"
- void init();
- void finalize();
- void injection(double x, double z, double &r, double &u, double &w, double &t, double &hr, double &ht);
- void hydro_const_theta(double z, double &r, double &t);
- void output(double *state, double etime);
- void ncwrap(int ierr, int line);
- void perform_timestep(double *state, double *state_tmp, double *flux, double *tend, double dt);
- void semi_discrete_step(double *state_init, double *state_forcing, double *state_out, double dt, int dir, double *flux, double *tend);
- void compute_tendencies_x(double *state, double *flux, double *tend);
- void compute_tendencies_z(double *state, double *flux, double *tend);
- void set_halo_values_x(double *state);
- void set_halo_values_z(double *state);
- ///////////////////////////////////////////////////////////////////////////////////////
- // THE MAIN PROGRAM STARTS HERE
- ///////////////////////////////////////////////////////////////////////////////////////
- int main(int argc, char **argv)
- {
- ///////////////////////////////////////////////////////////////////////////////////////
- // BEGIN USER-CONFIGURABLE PARAMETERS
- ///////////////////////////////////////////////////////////////////////////////////////
- //The x-direction length is twice as long as the z-direction length
- //So, you'll want to have nx_glob be twice as large as nz_glob
- nx_glob = 40; //Number of total cells in the x-dirction
- nz_glob = 20; //Number of total cells in the z-dirction
- sim_time = 1000; //How many seconds to run the simulation
- output_freq = 100; //How frequently to output data to file (in seconds)
- ///////////////////////////////////////////////////////////////////////////////////////
- // END USER-CONFIGURABLE PARAMETERS
- ///////////////////////////////////////////////////////////////////////////////////////
- if (argc == 4)
- {
- printf("The arguments supplied are %s %s %s\n", argv[1], argv[2], argv[3]);
- nx_glob = atoi(argv[1]);
- nz_glob = atoi(argv[2]);
- sim_time = atoi(argv[3]);
- }
- else
- {
- printf("Using default values ...\n");
- }
- nvtxRangePushA("Total");
- init();
- #pragma acc data copyin(state_tmp[(nz + 2 * hs) * (nx + 2 * hs) * NUM_VARS], hy_dens_cell[nz + 2 * hs], hy_dens_theta_cell[nz + 2 * hs], hy_dens_int[nz + 1], hy_dens_theta_int[nz + 1], hy_pressure_int[nz + 1]) \
- create(flux[(nz + 1) * (nx + 1) * NUM_VARS], tend[nz * nx * NUM_VARS]) \
- copy(state [0:(nz + 2 * hs) * (nx + 2 * hs) * NUM_VARS])
- {
- //Output the initial state
- //output(state, etime);
- ////////////////////////////////////////////////////
- // MAIN TIME STEP LOOP
- ////////////////////////////////////////////////////
- nvtxRangePushA("while");
- while (etime < sim_time)
- {
- //If the time step leads to exceeding the simulation time, shorten it for the last step
- if (etime + dt > sim_time)
- {
- dt = sim_time - etime;
- }
- //Perform a single time step
- nvtxRangePushA("perform_timestep");
- perform_timestep(state, state_tmp, flux, tend, dt);
- nvtxRangePop();
- //Inform the user
- printf("Elapsed Time: %lf / %lf\n", etime, sim_time);
- //Update the elapsed time and output counter
- etime = etime + dt;
- output_counter = output_counter + dt;
- //If it's time for output, reset the counter, and do output
- if (output_counter >= output_freq)
- {
- output_counter = output_counter - output_freq;
- #pragma acc update host(state[(nz + 2 * hs) * (nx + 2 * hs) * NUM_VARS])
- //output(state, etime);
- }
- }
- nvtxRangePop();
- }
- finalize();
- nvtxRangePop();
- }
- //Performs a single dimensionally split time step using a simple low-storate three-stage Runge-Kutta time integrator
- //The dimensional splitting is a second-order-accurate alternating Strang splitting in which the
- //order of directions is alternated each time step.
- //The Runge-Kutta method used here is defined as follows:
- // q* = q[n] + dt/3 * rhs(q[n])
- // q** = q[n] + dt/2 * rhs(q* )
- // q[n+1] = q[n] + dt/1 * rhs(q** )
- void perform_timestep(double *state, double *state_tmp, double *flux, double *tend, double dt)
- {
- if (direction_switch)
- {
- //x-direction first
- semi_discrete_step(state, state, state_tmp, dt / 3, DIR_X, flux, tend);
- semi_discrete_step(state, state_tmp, state_tmp, dt / 2, DIR_X, flux, tend);
- semi_discrete_step(state, state_tmp, state, dt / 1, DIR_X, flux, tend);
- //z-direction second
- semi_discrete_step(state, state, state_tmp, dt / 3, DIR_Z, flux, tend);
- semi_discrete_step(state, state_tmp, state_tmp, dt / 2, DIR_Z, flux, tend);
- semi_discrete_step(state, state_tmp, state, dt / 1, DIR_Z, flux, tend);
- }
- else
- {
- //z-direction second
- semi_discrete_step(state, state, state_tmp, dt / 3, DIR_Z, flux, tend);
- semi_discrete_step(state, state_tmp, state_tmp, dt / 2, DIR_Z, flux, tend);
- semi_discrete_step(state, state_tmp, state, dt / 1, DIR_Z, flux, tend);
- //x-direction first
- semi_discrete_step(state, state, state_tmp, dt / 3, DIR_X, flux, tend);
- semi_discrete_step(state, state_tmp, state_tmp, dt / 2, DIR_X, flux, tend);
- semi_discrete_step(state, state_tmp, state, dt / 1, DIR_X, flux, tend);
- }
- if (direction_switch)
- {
- direction_switch = 0;
- }
- else
- {
- direction_switch = 1;
- }
- }
- //Perform a single semi-discretized step in time with the form:
- //state_out = state_init + dt * rhs(state_forcing)
- //Meaning the step starts from state_init, computes the rhs using state_forcing, and stores the result in state_out
- void semi_discrete_step(double *state_init, double *state_forcing, double *state_out, double dt, int dir, double *flux, double *tend)
- {
- int i, k, ll, inds, indt;
- if (dir == DIR_X)
- {
- //Set the halo values in the x-direction
- set_halo_values_x(state_forcing);
- //Compute the time tendencies for the fluid state in the x-direction
- compute_tendencies_x(state_forcing, flux, tend);
- }
- else if (dir == DIR_Z)
- {
- //Set the halo values in the z-direction
- set_halo_values_z(state_forcing);
- //Compute the time tendencies for the fluid state in the z-direction
- compute_tendencies_z(state_forcing, flux, tend);
- }
- /////////////////////////////////////////////////
- // TODO: THREAD ME
- /////////////////////////////////////////////////
- //Apply the tendencies to the fluid state
- #pragma acc parallel loop collapse(3) private(inds, indt) default(present)
- for (ll = 0; ll < NUM_VARS; ll++)
- {
- for (k = 0; k < nz; k++)
- {
- for (i = 0; i < nx; i++)
- {
- inds = ll * (nz + 2 * hs) * (nx + 2 * hs) + (k + hs) * (nx + 2 * hs) + i + hs;
- indt = ll * nz * nx + k * nx + i;
- state_out[inds] = state_init[inds] + dt * tend[indt];
- }
- }
- }
- }
- //Compute the time tendencies of the fluid state using forcing in the x-direction
- //First, compute the flux vector at each cell interface in the x-direction (including hyperviscosity)
- //Then, compute the tendencies using those fluxes
- void compute_tendencies_x(double *state, double *flux, double *tend)
- {
- int i, k, ll, s, inds, indf1, indf2, indt;
- double r, u, w, t, p, stencil[4], d3_vals[NUM_VARS], vals[NUM_VARS], hv_coef;
- //Compute the hyperviscosity coeficient
- hv_coef = -hv_beta * dx / (16 * dt);
- /////////////////////////////////////////////////
- // TODO: THREAD ME
- /////////////////////////////////////////////////
- //Compute fluxes in the x-direction for each cell
- #pragma acc parallel loop collapse(2) private(ll, s, inds, stencil, vals, d3_vals, r, u, w, t, p) default(present)
- for (k = 0; k < nz; k++)
- {
- for (i = 0; i < nx + 1; i++)
- {
- //Use fourth-order interpolation from four cell averages to compute the value at the interface in question
- for (ll = 0; ll < NUM_VARS; ll++)
- {
- for (s = 0; s < sten_size; s++)
- {
- inds = ll * (nz + 2 * hs) * (nx + 2 * hs) + (k + hs) * (nx + 2 * hs) + i + s;
- stencil[s] = state[inds];
- }
- //Fourth-order-accurate interpolation of the state
- vals[ll] = -stencil[0] / 12 + 7 * stencil[1] / 12 + 7 * stencil[2] / 12 - stencil[3] / 12;
- //First-order-accurate interpolation of the third spatial derivative of the state (for artificial viscosity)
- d3_vals[ll] = -stencil[0] + 3 * stencil[1] - 3 * stencil[2] + stencil[3];
- }
- //Compute density, u-wind, w-wind, potential temperature, and pressure (r,u,w,t,p respectively)
- r = vals[ID_DENS] + hy_dens_cell[k + hs];
- u = vals[ID_UMOM] / r;
- w = vals[ID_WMOM] / r;
- t = (vals[ID_RHOT] + hy_dens_theta_cell[k + hs]) / r;
- p = C0 * pow((r * t), gamm);
- //Compute the flux vector
- flux[ID_DENS * (nz + 1) * (nx + 1) + k * (nx + 1) + i] = r * u - hv_coef * d3_vals[ID_DENS];
- flux[ID_UMOM * (nz + 1) * (nx + 1) + k * (nx + 1) + i] = r * u * u + p - hv_coef * d3_vals[ID_UMOM];
- flux[ID_WMOM * (nz + 1) * (nx + 1) + k * (nx + 1) + i] = r * u * w - hv_coef * d3_vals[ID_WMOM];
- flux[ID_RHOT * (nz + 1) * (nx + 1) + k * (nx + 1) + i] = r * u * t - hv_coef * d3_vals[ID_RHOT];
- }
- }
- /////////////////////////////////////////////////
- // TODO: THREAD ME
- /////////////////////////////////////////////////
- //Use the fluxes to compute tendencies for each cell
- #pragma acc parallel loop collapse(3) private(indt, indf1, indf2) default(present)
- for (ll = 0; ll < NUM_VARS; ll++)
- {
- for (k = 0; k < nz; k++)
- {
- for (i = 0; i < nx; i++)
- {
- indt = ll * nz * nx + k * nx + i;
- indf1 = ll * (nz + 1) * (nx + 1) + k * (nx + 1) + i;
- indf2 = ll * (nz + 1) * (nx + 1) + k * (nx + 1) + i + 1;
- tend[indt] = -(flux[indf2] - flux[indf1]) / dx;
- }
- }
- }
- }
- //Compute the time tendencies of the fluid state using forcing in the z-direction
- //First, compute the flux vector at each cell interface in the z-direction (including hyperviscosity)
- //Then, compute the tendencies using those fluxes
- void compute_tendencies_z(double *state, double *flux, double *tend)
- {
- int i, k, ll, s, inds, indf1, indf2, indt;
- double r, u, w, t, p, stencil[4], d3_vals[NUM_VARS], vals[NUM_VARS], hv_coef;
- //Compute the hyperviscosity coeficient
- hv_coef = -hv_beta * dx / (16 * dt);
- /////////////////////////////////////////////////
- // TODO: THREAD ME
- /////////////////////////////////////////////////
- //Compute fluxes in the x-direction for each cell
- #pragma acc parallel loop collapse(2) private(ll, s, inds, stencil, vals, d3_vals, r, u, w, t, p) default(present)
- for (k = 0; k < nz + 1; k++)
- {
- for (i = 0; i < nx; i++)
- {
- //Use fourth-order interpolation from four cell averages to compute the value at the interface in question
- for (ll = 0; ll < NUM_VARS; ll++)
- {
- for (s = 0; s < sten_size; s++)
- {
- inds = ll * (nz + 2 * hs) * (nx + 2 * hs) + (k + s) * (nx + 2 * hs) + i + hs;
- stencil[s] = state[inds];
- }
- //Fourth-order-accurate interpolation of the state
- vals[ll] = -stencil[0] / 12 + 7 * stencil[1] / 12 + 7 * stencil[2] / 12 - stencil[3] / 12;
- //First-order-accurate interpolation of the third spatial derivative of the state
- d3_vals[ll] = -stencil[0] + 3 * stencil[1] - 3 * stencil[2] + stencil[3];
- }
- //Compute density, u-wind, w-wind, potential temperature, and pressure (r,u,w,t,p respectively)
- r = vals[ID_DENS] + hy_dens_int[k];
- u = vals[ID_UMOM] / r;
- w = vals[ID_WMOM] / r;
- t = (vals[ID_RHOT] + hy_dens_theta_int[k]) / r;
- p = C0 * pow((r * t), gamm) - hy_pressure_int[k];
- //Compute the flux vector with hyperviscosity
- flux[ID_DENS * (nz + 1) * (nx + 1) + k * (nx + 1) + i] = r * w - hv_coef * d3_vals[ID_DENS];
- flux[ID_UMOM * (nz + 1) * (nx + 1) + k * (nx + 1) + i] = r * w * u - hv_coef * d3_vals[ID_UMOM];
- flux[ID_WMOM * (nz + 1) * (nx + 1) + k * (nx + 1) + i] = r * w * w + p - hv_coef * d3_vals[ID_WMOM];
- flux[ID_RHOT * (nz + 1) * (nx + 1) + k * (nx + 1) + i] = r * w * t - hv_coef * d3_vals[ID_RHOT];
- }
- }
- /////////////////////////////////////////////////
- // TODO: THREAD ME
- /////////////////////////////////////////////////
- //Use the fluxes to compute tendencies for each cell
- #pragma acc parallel loop collapse(3) private(indt, indf1, indf2) default(present)
- for (ll = 0; ll < NUM_VARS; ll++)
- {
- for (k = 0; k < nz; k++)
- {
- for (i = 0; i < nx; i++)
- {
- indt = ll * nz * nx + k * nx + i;
- indf1 = ll * (nz + 1) * (nx + 1) + (k) * (nx + 1) + i;
- indf2 = ll * (nz + 1) * (nx + 1) + (k + 1) * (nx + 1) + i;
- tend[indt] = -(flux[indf2] - flux[indf1]) / dz;
- if (ll == ID_WMOM)
- {
- inds = ID_DENS * (nz + 2 * hs) * (nx + 2 * hs) + (k + hs) * (nx + 2 * hs) + i + hs;
- tend[indt] = tend[indt] - state[inds] * grav;
- }
- }
- }
- }
- }
- void set_halo_values_x(double *state)
- {
- int k, ll, ind_r, ind_u, ind_t, i;
- double z;
- #pragma acc parallel loop collapse(2) default(present)
- for (ll = 0; ll < NUM_VARS; ll++)
- {
- for (k = 0; k < nz; k++)
- {
- state[ll * (nz + 2 * hs) * (nx + 2 * hs) + (k + hs) * (nx + 2 * hs) + 0] = state[ll * (nz + 2 * hs) * (nx + 2 * hs) + (k + hs) * (nx + 2 * hs) + nx + hs - 2];
- state[ll * (nz + 2 * hs) * (nx + 2 * hs) + (k + hs) * (nx + 2 * hs) + 1] = state[ll * (nz + 2 * hs) * (nx + 2 * hs) + (k + hs) * (nx + 2 * hs) + nx + hs - 1];
- state[ll * (nz + 2 * hs) * (nx + 2 * hs) + (k + hs) * (nx + 2 * hs) + nx + hs] = state[ll * (nz + 2 * hs) * (nx + 2 * hs) + (k + hs) * (nx + 2 * hs) + hs];
- state[ll * (nz + 2 * hs) * (nx + 2 * hs) + (k + hs) * (nx + 2 * hs) + nx + hs + 1] = state[ll * (nz + 2 * hs) * (nx + 2 * hs) + (k + hs) * (nx + 2 * hs) + hs + 1];
- }
- }
- ////////////////////////////////////////////////////
- if (myrank == 0)
- {
- for (k = 0; k < nz; k++)
- {
- for (i = 0; i < hs; i++)
- {
- z = (k_beg + k + 0.5) * dz;
- if (abs(z - 3 * zlen / 4) <= zlen / 16)
- {
- ind_r = ID_DENS * (nz + 2 * hs) * (nx + 2 * hs) + (k + hs) * (nx + 2 * hs) + i;
- ind_u = ID_UMOM * (nz + 2 * hs) * (nx + 2 * hs) + (k + hs) * (nx + 2 * hs) + i;
- ind_t = ID_RHOT * (nz + 2 * hs) * (nx + 2 * hs) + (k + hs) * (nx + 2 * hs) + i;
- state[ind_u] = (state[ind_r] + hy_dens_cell[k + hs]) * 50.;
- state[ind_t] = (state[ind_r] + hy_dens_cell[k + hs]) * 298. - hy_dens_theta_cell[k + hs];
- }
- }
- }
- }
- }
- //Set this task's halo values in the z-direction.
- //decomposition in the vertical direction.
- void set_halo_values_z(double *state)
- {
- int i, ll;
- const double mnt_width = xlen / 8;
- double x, xloc, mnt_deriv;
- /////////////////////////////////////////////////
- // TODO: THREAD ME
- /////////////////////////////////////////////////
- #pragma acc parallel loop private(x, xloc, mnt_deriv) default(present)
- for (ll = 0; ll < NUM_VARS; ll++)
- {
- for (i = 0; i < nx + 2 * hs; i++)
- {
- if (ll == ID_WMOM)
- {
- state[ll * (nz + 2 * hs) * (nx + 2 * hs) + (0) * (nx + 2 * hs) + i] = 0.;
- state[ll * (nz + 2 * hs) * (nx + 2 * hs) + (1) * (nx + 2 * hs) + i] = 0.;
- state[ll * (nz + 2 * hs) * (nx + 2 * hs) + (nz + hs) * (nx + 2 * hs) + i] = 0.;
- state[ll * (nz + 2 * hs) * (nx + 2 * hs) + (nz + hs + 1) * (nx + 2 * hs) + i] = 0.;
- }
- else
- {
- state[ll * (nz + 2 * hs) * (nx + 2 * hs) + (0) * (nx + 2 * hs) + i] = state[ll * (nz + 2 * hs) * (nx + 2 * hs) + (hs) * (nx + 2 * hs) + i];
- state[ll * (nz + 2 * hs) * (nx + 2 * hs) + (1) * (nx + 2 * hs) + i] = state[ll * (nz + 2 * hs) * (nx + 2 * hs) + (hs) * (nx + 2 * hs) + i];
- state[ll * (nz + 2 * hs) * (nx + 2 * hs) + (nz + hs) * (nx + 2 * hs) + i] = state[ll * (nz + 2 * hs) * (nx + 2 * hs) + (nz + hs - 1) * (nx + 2 * hs) + i];
- state[ll * (nz + 2 * hs) * (nx + 2 * hs) + (nz + hs + 1) * (nx + 2 * hs) + i] = state[ll * (nz + 2 * hs) * (nx + 2 * hs) + (nz + hs - 1) * (nx + 2 * hs) + i];
- }
- }
- }
- }
- void init()
- {
- int i, k, ii, kk, ll, inds, i_end;
- double x, z, r, u, w, t, hr, ht, nper;
- //Set the cell grid size
- dx = xlen / nx_glob;
- dz = zlen / nz_glob;
- nranks = 1;
- myrank = 0;
- // For simpler version, replace i_beg = 0, nx = nx_glob, left_rank = 0, right_rank = 0;
- nper = ((double)nx_glob) / nranks;
- i_beg = round(nper * (myrank));
- i_end = round(nper * ((myrank) + 1)) - 1;
- nx = i_end - i_beg + 1;
- left_rank = myrank - 1;
- if (left_rank == -1)
- left_rank = nranks - 1;
- right_rank = myrank + 1;
- if (right_rank == nranks)
- right_rank = 0;
- ////////////////////////////////////////////////////////////////////////////////
- ////////////////////////////////////////////////////////////////////////////////
- // YOU DON'T NEED TO ALTER ANYTHING BELOW THIS POINT IN THE CODE
- ////////////////////////////////////////////////////////////////////////////////
- ////////////////////////////////////////////////////////////////////////////////
- k_beg = 0;
- nz = nz_glob;
- //Allocate the model data
- state = (double *)malloc((nx + 2 * hs) * (nz + 2 * hs) * NUM_VARS * sizeof(double));
- state_tmp = (double *)malloc((nx + 2 * hs) * (nz + 2 * hs) * NUM_VARS * sizeof(double));
- flux = (double *)malloc((nx + 1) * (nz + 1) * NUM_VARS * sizeof(double));
- tend = (double *)malloc(nx * nz * NUM_VARS * sizeof(double));
- hy_dens_cell = (double *)malloc((nz + 2 * hs) * sizeof(double));
- hy_dens_theta_cell = (double *)malloc((nz + 2 * hs) * sizeof(double));
- hy_dens_int = (double *)malloc((nz + 1) * sizeof(double));
- hy_dens_theta_int = (double *)malloc((nz + 1) * sizeof(double));
- hy_pressure_int = (double *)malloc((nz + 1) * sizeof(double));
- //Define the maximum stable time step based on an assumed maximum wind speed
- dt = dmin(dx, dz) / max_speed * cfl;
- //Set initial elapsed model time and output_counter to zero
- etime = 0.;
- output_counter = 0.;
- // Display grid information
- printf("nx_glob, nz_glob: %d %d\n", nx_glob, nz_glob);
- printf("dx,dz: %lf %lf\n", dx, dz);
- printf("dt: %lf\n", dt);
- //////////////////////////////////////////////////////////////////////////
- // Initialize the cell-averaged fluid state via Gauss-Legendre quadrature
- //////////////////////////////////////////////////////////////////////////
- for (k = 0; k < nz + 2 * hs; k++)
- {
- for (i = 0; i < nx + 2 * hs; i++)
- {
- //Initialize the state to zero
- for (ll = 0; ll < NUM_VARS; ll++)
- {
- inds = ll * (nz + 2 * hs) * (nx + 2 * hs) + k * (nx + 2 * hs) + i;
- state[inds] = 0.;
- }
- //Use Gauss-Legendre quadrature to initialize a hydrostatic balance + temperature perturbation
- for (kk = 0; kk < nqpoints; kk++)
- {
- for (ii = 0; ii < nqpoints; ii++)
- {
- //Compute the x,z location within the global domain based on cell and quadrature index
- x = (i_beg + i - hs + 0.5) * dx + (qpoints[ii] - 0.5) * dx;
- z = (k_beg + k - hs + 0.5) * dz + (qpoints[kk] - 0.5) * dz;
- //Set the fluid state based on the user's specification (default is injection in this example)
- injection(x, z, r, u, w, t, hr, ht);
- //Store into the fluid state array
- inds = ID_DENS * (nz + 2 * hs) * (nx + 2 * hs) + k * (nx + 2 * hs) + i;
- state[inds] = state[inds] + r * qweights[ii] * qweights[kk];
- inds = ID_UMOM * (nz + 2 * hs) * (nx + 2 * hs) + k * (nx + 2 * hs) + i;
- state[inds] = state[inds] + (r + hr) * u * qweights[ii] * qweights[kk];
- inds = ID_WMOM * (nz + 2 * hs) * (nx + 2 * hs) + k * (nx + 2 * hs) + i;
- state[inds] = state[inds] + (r + hr) * w * qweights[ii] * qweights[kk];
- inds = ID_RHOT * (nz + 2 * hs) * (nx + 2 * hs) + k * (nx + 2 * hs) + i;
- state[inds] = state[inds] + ((r + hr) * (t + ht) - hr * ht) * qweights[ii] * qweights[kk];
- }
- }
- for (ll = 0; ll < NUM_VARS; ll++)
- {
- inds = ll * (nz + 2 * hs) * (nx + 2 * hs) + k * (nx + 2 * hs) + i;
- state_tmp[inds] = state[inds];
- }
- }
- }
- //Compute the hydrostatic background state over vertical cell averages
- for (k = 0; k < nz + 2 * hs; k++)
- {
- hy_dens_cell[k] = 0.;
- hy_dens_theta_cell[k] = 0.;
- for (kk = 0; kk < nqpoints; kk++)
- {
- z = (k_beg + k - hs + 0.5) * dz;
- //Set the fluid state based on the user's specification (default is injection in this example)
- injection(0., z, r, u, w, t, hr, ht);
- hy_dens_cell[k] = hy_dens_cell[k] + hr * qweights[kk];
- hy_dens_theta_cell[k] = hy_dens_theta_cell[k] + hr * ht * qweights[kk];
- }
- }
- //Compute the hydrostatic background state at vertical cell interfaces
- for (k = 0; k < nz + 1; k++)
- {
- z = (k_beg + k) * dz;
- //Set the fluid state based on the user's specification (default is injection in this example)
- injection(0., z, r, u, w, t, hr, ht);
- hy_dens_int[k] = hr;
- hy_dens_theta_int[k] = hr * ht;
- hy_pressure_int[k] = C0 * pow((hr * ht), gamm);
- }
- }
- //This test case is initially balanced but injects fast, cold air from the left boundary near the model top
- //x and z are input coordinates at which to sample
- //r,u,w,t are output density, u-wind, w-wind, and potential temperature at that location
- //hr and ht are output background hydrostatic density and potential temperature at that location
- void injection(double x, double z, double &r, double &u, double &w, double &t, double &hr, double &ht)
- {
- hydro_const_theta(z, hr, ht);
- r = 0.;
- t = 0.;
- u = 0.;
- w = 0.;
- }
- //Establish hydrstatic balance using constant potential temperature (thermally neutral atmosphere)
- //z is the input coordinate
- //r and t are the output background hydrostatic density and potential temperature
- void hydro_const_theta(double z, double &r, double &t)
- {
- const double theta0 = 300.; //Background potential temperature
- const double exner0 = 1.; //Surface-level Exner pressure
- double p, exner, rt;
- //Establish hydrostatic balance first using Exner pressure
- t = theta0; //Potential Temperature at z
- exner = exner0 - grav * z / (cp * theta0); //Exner pressure at z
- p = p0 * pow(exner, (cp / rd)); //Pressure at z
- rt = pow((p / C0), (1. / gamm)); //rho*theta at z
- r = rt / t; //Density at z
- }
- void finalize()
- {
- free(state);
- free(state_tmp);
- free(flux);
- free(tend);
- free(hy_dens_cell);
- free(hy_dens_theta_cell);
- free(hy_dens_int);
- free(hy_dens_theta_int);
- free(hy_pressure_int);
- }
|