Mozhgan K. Chimeh 4d6ceabc08 updated screenshots il y a 3 ans
..
nways_labs 4d6ceabc08 updated screenshots il y a 3 ans
Dockerfile ef92d69703 updated order of approaches il y a 3 ans
README.md ddaa493981 added nways-MD il y a 3 ans
Singularity 1b8d4e9727 updated MD il y a 3 ans

README.md

Nways to GPU programming

This repository contains mini applications for GPU Bootcamps (Tested on NVIDIA driver 440.82). This labs comprises Nways to GPU programming and contains below topics:

  • OpenACC
  • Kokkos
  • PSTL
  • OpenMP
  • CUDA C

We showcase above ways using mini applications in MD domain and CFD.

Prerequisites:

To run this tutorial you will need a machine with NVIDIA GPU.

Creating containers

To start with, you will have to build a Docker or Singularity container.

Docker Container

To build a docker container, run: sudo docker build -t <imagename>:<tagnumber> .

For instance: sudo docker build -t myimage:1.0 .

The code labs have been written using Jupyter notebooks and a Dockerfile has been built to simplify deployment. In order to serve the docker instance for a student, it is necessary to expose port 8000 from the container, for instance, the following command would expose port 8000 inside the container as port 8000 on the lab machine:

sudo docker run --rm -it --gpus=all -p 8888:8888 myimage:1.0

When this command is run, you can browse to the serving machine on port 8000 using any web browser to access the labs. For instance, from if they are running on the local machine the web browser should be pointed to http://localhost:8000. The --gpus flag is used to enable all NVIDIA GPUs during container runtime. The --rm flag is used to clean an temporary images created during the running of the container. The -it flag enables killing the jupyter server with ctrl-c. This command may be customized for your hosting environment.

Then, inside the container launch the Jupyter notebook assigning the port you opened:

jupyter notebook --ip 0.0.0.0 --port 8888 --no-browser --allow-root

Once inside the container, open the jupyter notebook in browser: http://localhost:8888, and start the lab by clicking on the START_nways.ipynb notebook.

Singularity Container

To build the singularity container, run: singularity build nways.simg Singularity

and copy the files to your local machine to make sure changes are stored locally: singularity run nways.simg cp -rT /labs ~/labs

Then, run the container: singularity run --nv nways.simg jupyter notebook --notebook-dir=~/labs

Once inside the container, open the jupyter notebook in browser: http://localhost:8888, and start the lab by clicking on the nways_start.ipynb notebook.

Questions?

Please join OpenACC Slack Channel for questions.