1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768697071727374757677787980818283848586878889909192939495969798 |
- # coding=utf-8
- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Pretrain VIT"""
- import torch
- import torch.nn.functional as F
- from functools import partial
- from megatron import get_args, get_timers, mpu, print_rank_0
- from megatron.data.vit_dataset import build_train_valid_datasets
- from megatron.model.vit_model import VitModel
- from megatron.training import pretrain
- from megatron.utils import average_losses_across_data_parallel_group
- def model_provider(pre_process=True, post_process=True):
- """Build the model."""
- print_rank_0("building VIT model ...")
- args = get_args()
- model = VitModel(num_classes=args.num_classes,
- pre_process=pre_process,
- post_process=post_process)
- return model
- def get_batch(data_iterator):
- """Build the batch."""
- data = next(data_iterator)
- # only data parallelism; no need for broadcast
- images = data[0].cuda()
- labels = data[1].cuda()
- return images, labels
- def loss_func(labels, output_tensor):
- logits = output_tensor.contiguous().float()
- loss = F.cross_entropy(logits, labels)
- outputs = torch.argmax(logits, -1)
- correct = (outputs == labels).float()
- accuracy = torch.mean(correct)
- averaged_loss = average_losses_across_data_parallel_group([loss, accuracy])
- return loss, {"loss": averaged_loss[0], "accuracy": averaged_loss[1]}
- def forward_step(data_iterator, model):
- """Forward step."""
- timers = get_timers()
- # Get the batch.
- timers("batch-generator").start()
- (
- images,
- labels,
- ) = get_batch(data_iterator)
- timers("batch-generator").stop()
- # Forward model. lm_labels
- output_tensor = model(images)
- return output_tensor, partial(loss_func, labels)
- def train_valid_test_datasets_provider(train_val_test_num_samples):
- """Build train, valid, and test datasets."""
- args = get_args()
- print_rank_0(
- "> building train, validation, and test datasets " "for VIT ..."
- )
- train_ds, valid_ds = build_train_valid_datasets(data_path=args.data_path)
- print_rank_0("> finished creating VIT datasets ...")
- return train_ds, valid_ds, None
- if __name__ == "__main__":
- pretrain(
- train_valid_test_datasets_provider,
- model_provider,
- forward_step,
- args_defaults={'dataloader_type': 'cyclic'}
- )
|