12345678910111213141516171819202122232425262728293031323334353637383940414243444546474849505152535455565758596061626364656667686970717273747576777879808182838485868788899091929394 |
- # coding=utf-8
- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """GLUE finetuning/evaluation."""
- from megatron import get_args
- from megatron import print_rank_0
- from megatron import get_tokenizer
- from megatron import mpu
- from megatron.model.classification import Classification
- from tasks.eval_utils import accuracy_func_provider
- from tasks.finetune_utils import finetune
- def glue_classification(num_classes, Dataset,
- name_from_datapath_func):
- def train_valid_datasets_provider():
- """Build train and validation dataset."""
- args = get_args()
- tokenizer = get_tokenizer()
- train_dataset = Dataset('training', args.train_data,
- tokenizer, args.seq_length)
- valid_dataset = Dataset('validation', args.valid_data,
- tokenizer, args.seq_length)
- return train_dataset, valid_dataset
- def model_provider(pre_process=True, post_process=True):
- """Build the model."""
- args = get_args()
- print_rank_0('building classification model for {} ...'.format(
- args.task))
- model = Classification(num_classes=num_classes, num_tokentypes=2,
- pre_process=pre_process, post_process=post_process)
- return model
- def metrics_func_provider():
- """Privde metrics callback function."""
- def single_dataset_provider(datapath):
- args = get_args()
- tokenizer = get_tokenizer()
- name = name_from_datapath_func(datapath)
- return Dataset(name, [datapath], tokenizer, args.seq_length)
- return accuracy_func_provider(single_dataset_provider)
- """Finetune/evaluate."""
- finetune(train_valid_datasets_provider, model_provider,
- end_of_epoch_callback_provider=metrics_func_provider)
- def main():
- args = get_args()
- if args.task == 'MNLI':
- num_classes = 3
- from tasks.glue.mnli import MNLIDataset as Dataset
- def name_from_datapath(datapath):
- return datapath.split('MNLI')[-1].strip(
- '.tsv').strip('/').replace('_', '-')
- elif args.task == 'QQP':
- num_classes = 2
- from tasks.glue.qqp import QQPDataset as Dataset
- def name_from_datapath(datapath):
- return datapath.split('QQP')[-1].strip(
- '.tsv').strip('/').replace('_', '-')
- else:
- raise NotImplementedError('GLUE task {} is not implemented.'.format(
- args.task))
- glue_classification(num_classes, Dataset, name_from_datapath)
|