1234567891011121314151617181920212223242526272829303132333435363738394041424344454647484950515253545556575859606162636465666768 |
- # coding=utf-8
- # Copyright (c) 2020, NVIDIA CORPORATION. All rights reserved.
- #
- # Licensed under the Apache License, Version 2.0 (the "License");
- # you may not use this file except in compliance with the License.
- # You may obtain a copy of the License at
- #
- # http://www.apache.org/licenses/LICENSE-2.0
- #
- # Unless required by applicable law or agreed to in writing, software
- # distributed under the License is distributed on an "AS IS" BASIS,
- # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
- # See the License for the specific language governing permissions and
- # limitations under the License.
- """Race."""
- from megatron import get_args
- from megatron import print_rank_0
- from megatron import get_tokenizer
- from megatron import mpu
- from megatron.model.multiple_choice import MultipleChoice
- from tasks.eval_utils import accuracy_func_provider
- from tasks.finetune_utils import finetune
- from tasks.race.data import RaceDataset
- def train_valid_datasets_provider():
- """Provide train and validation datasets."""
- args = get_args()
- tokenizer = get_tokenizer()
- train_dataset = RaceDataset('training', args.train_data,
- tokenizer, args.seq_length)
- valid_dataset = RaceDataset('validation', args.valid_data,
- tokenizer, args.seq_length)
- return train_dataset, valid_dataset
- def model_provider(pre_process=True, post_process=True):
- """Build the model."""
- print_rank_0('building multichoice model for RACE ...')
- model = MultipleChoice(num_tokentypes=2,
- pre_process=pre_process,
- post_process=post_process)
- return model
- def metrics_func_provider():
- """Privde metrics callback function."""
- args = get_args()
- tokenizer = get_tokenizer()
- def single_dataset_provider(datapath):
- name = datapath.split('RACE')[-1].strip('/').replace('/', '-')
- return RaceDataset(name, [datapath], tokenizer, args.seq_length)
- return accuracy_func_provider(single_dataset_provider)
- def main():
- finetune(train_valid_datasets_provider, model_provider,
- end_of_epoch_callback_provider=metrics_func_provider)
|