浏览代码

Added screenshot to README, fixed issue with standalone.py

Maxime Chevalier-Boisvert 7 年之前
父节点
当前提交
3e42fe68d3
共有 3 个文件被更改,包括 19 次插入4 次删除
  1. 6 2
      README.md
  2. 二进制
      figures/door-key-env.png
  3. 13 2
      standalone.py

+ 6 - 2
README.md

@@ -89,6 +89,10 @@ Registered configurations:
 - `MiniGrid-Door-Key-8x8-v0`
 - `MiniGrid-Door-Key-8x8-v0`
 - `MiniGrid-Door-Key-16x16-v0`
 - `MiniGrid-Door-Key-16x16-v0`
 
 
+<p align="center">
+<img src="/figures/door-key-env.png">
+</p>
+
 This environment has a key that the agent must pick up in order to unlock
 This environment has a key that the agent must pick up in order to unlock
 a goal and then get to the green goal square. This environment is difficult,
 a goal and then get to the green goal square. This environment is difficult,
 because of the sparse reward, to solve using classical RL algorithms. It is
 because of the sparse reward, to solve using classical RL algorithms. It is
@@ -99,7 +103,7 @@ useful to experiment with curiosity or curriculum learning.
 Registered configurations:
 Registered configurations:
 - `MiniGrid-Multi-Room-N6-v0`
 - `MiniGrid-Multi-Room-N6-v0`
 
 
-<p align="center"> 
+<p align="center">
 <img src="/figures/multi-room.gif" width=416 height=424>
 <img src="/figures/multi-room.gif" width=416 height=424>
 </p>
 </p>
 
 
@@ -114,7 +118,7 @@ rooms and building a curriculum, the environment can be solved.
 Registered configurations:
 Registered configurations:
 - `MiniGrid-Fetch-8x8-v0`
 - `MiniGrid-Fetch-8x8-v0`
 
 
-<p align="center"> 
+<p align="center">
 <img src="/figures/fetch-env.png" width=392 height=269>
 <img src="/figures/fetch-env.png" width=392 height=269>
 </p>
 </p>
 
 

二进制
figures/door-key-env.png


+ 13 - 2
standalone.py

@@ -5,13 +5,24 @@ from __future__ import division, print_function
 import numpy
 import numpy
 import gym
 import gym
 import time
 import time
+from optparse import OptionParser
 
 
 import gym_minigrid
 import gym_minigrid
 from gym_minigrid.envs import MiniGridEnv
 from gym_minigrid.envs import MiniGridEnv
 
 
 def main():
 def main():
-
-    env = gym.make('MiniGrid-Multi-Room-N6-v0')
+    parser = OptionParser()
+    parser.add_option(
+        "-e",
+        "--env-name",
+        dest="env_name",
+        help="gym environment to load",
+        default='MiniGrid-Multi-Room-N6-v0'
+    )
+    (options, args) = parser.parse_args()
+
+    # Load the gym environment
+    env = gym.make(options.env_name)
     env.reset()
     env.reset()
 
 
     # Create a window to render into
     # Create a window to render into