|
@@ -8,7 +8,7 @@ from utils import orthogonal
|
|
|
|
|
|
class FFPolicy(nn.Module):
|
|
|
def __init__(self):
|
|
|
- super(FFPolicy, self).__init__()
|
|
|
+ super().__init__()
|
|
|
|
|
|
def forward(self, inputs, states, masks):
|
|
|
raise NotImplementedError
|
|
@@ -27,30 +27,31 @@ class FFPolicy(nn.Module):
|
|
|
def weights_init_mlp(m):
|
|
|
classname = m.__class__.__name__
|
|
|
if classname.find('Linear') != -1:
|
|
|
- m.weight.data.normal_(0, 1)
|
|
|
- m.weight.data *= 1 / torch.sqrt(m.weight.data.pow(2).sum(1, keepdim=True))
|
|
|
+ nn.init.xavier_normal(m.weight)
|
|
|
if m.bias is not None:
|
|
|
m.bias.data.fill_(0)
|
|
|
|
|
|
-class RecMLPPolicy(FFPolicy):
|
|
|
+class Policy(FFPolicy):
|
|
|
def __init__(self, num_inputs, action_space):
|
|
|
- super(RecMLPPolicy, self).__init__()
|
|
|
+ super().__init__()
|
|
|
|
|
|
self.action_space = action_space
|
|
|
assert action_space.__class__.__name__ == "Discrete"
|
|
|
num_outputs = action_space.n
|
|
|
|
|
|
- self.a_fc1 = nn.Linear(num_inputs, 64)
|
|
|
- self.a_fc2 = nn.Linear(64, 64)
|
|
|
+ self.fc1 = nn.Linear(num_inputs, 128)
|
|
|
+ self.fc2 = nn.Linear(128, 128)
|
|
|
|
|
|
- self.v_fc1 = nn.Linear(num_inputs, 64)
|
|
|
- self.v_fc2 = nn.Linear(64, 64)
|
|
|
- self.v_fc3 = nn.Linear(64, 1)
|
|
|
+ # Input size, hidden state size
|
|
|
+ self.gru = nn.GRUCell(128, 128)
|
|
|
|
|
|
- # Input size, hidden size
|
|
|
- self.gru = nn.GRUCell(64, 64)
|
|
|
+ self.a_fc1 = nn.Linear(128, 128)
|
|
|
+ self.a_fc2 = nn.Linear(128, 128)
|
|
|
+ self.dist = Categorical(128, num_outputs)
|
|
|
|
|
|
- self.dist = Categorical(64, num_outputs)
|
|
|
+ self.v_fc1 = nn.Linear(128, 128)
|
|
|
+ self.v_fc2 = nn.Linear(128, 128)
|
|
|
+ self.v_fc3 = nn.Linear(128, 1)
|
|
|
|
|
|
self.train()
|
|
|
self.reset_parameters()
|
|
@@ -58,9 +59,9 @@ class RecMLPPolicy(FFPolicy):
|
|
|
@property
|
|
|
def state_size(self):
|
|
|
"""
|
|
|
- Size of the recurrent state of the model (propagated between steps
|
|
|
+ Size of the recurrent state of the model (propagated between steps)
|
|
|
"""
|
|
|
- return 64
|
|
|
+ return 128
|
|
|
|
|
|
def reset_parameters(self):
|
|
|
self.apply(weights_init_mlp)
|
|
@@ -77,161 +78,24 @@ class RecMLPPolicy(FFPolicy):
|
|
|
batch_numel = reduce(operator.mul, inputs.size()[1:], 1)
|
|
|
inputs = inputs.view(-1, batch_numel)
|
|
|
|
|
|
- x = self.a_fc1(inputs)
|
|
|
+ x = self.fc1(inputs)
|
|
|
x = F.tanh(x)
|
|
|
- x = self.a_fc2(x)
|
|
|
+ x = self.fc2(x)
|
|
|
x = F.tanh(x)
|
|
|
|
|
|
assert inputs.size(0) == states.size(0)
|
|
|
- x = states = self.gru(x, states * masks)
|
|
|
- actions = x
|
|
|
+ states = self.gru(x, states * masks)
|
|
|
|
|
|
- x = self.v_fc1(inputs)
|
|
|
+ x = self.a_fc1(states)
|
|
|
x = F.tanh(x)
|
|
|
- x = self.v_fc2(x)
|
|
|
- x = F.tanh(x)
|
|
|
- x = self.v_fc3(x)
|
|
|
- value = x
|
|
|
-
|
|
|
- return value, actions, states
|
|
|
-
|
|
|
-class MLPPolicy(FFPolicy):
|
|
|
- def __init__(self, num_inputs, action_space):
|
|
|
- super(MLPPolicy, self).__init__()
|
|
|
-
|
|
|
- self.action_space = action_space
|
|
|
-
|
|
|
- self.a_fc1 = nn.Linear(num_inputs, 64)
|
|
|
- self.a_fc2 = nn.Linear(64, 64)
|
|
|
-
|
|
|
- self.v_fc1 = nn.Linear(num_inputs, 64)
|
|
|
- self.v_fc2 = nn.Linear(64, 64)
|
|
|
- self.v_fc3 = nn.Linear(64, 1)
|
|
|
-
|
|
|
- if action_space.__class__.__name__ == "Discrete":
|
|
|
- num_outputs = action_space.n
|
|
|
- self.dist = Categorical(64, num_outputs)
|
|
|
- elif action_space.__class__.__name__ == "Box":
|
|
|
- num_outputs = action_space.shape[0]
|
|
|
- self.dist = DiagGaussian(64, num_outputs)
|
|
|
- else:
|
|
|
- raise NotImplementedError
|
|
|
-
|
|
|
- self.train()
|
|
|
- self.reset_parameters()
|
|
|
-
|
|
|
- @property
|
|
|
- def state_size(self):
|
|
|
- return 1
|
|
|
-
|
|
|
- def reset_parameters(self):
|
|
|
- self.apply(weights_init_mlp)
|
|
|
-
|
|
|
- """
|
|
|
- tanh_gain = nn.init.calculate_gain('tanh')
|
|
|
- self.a_fc1.weight.data.mul_(tanh_gain)
|
|
|
- self.a_fc2.weight.data.mul_(tanh_gain)
|
|
|
- self.v_fc1.weight.data.mul_(tanh_gain)
|
|
|
- self.v_fc2.weight.data.mul_(tanh_gain)
|
|
|
- """
|
|
|
-
|
|
|
- if self.dist.__class__.__name__ == "DiagGaussian":
|
|
|
- self.dist.fc_mean.weight.data.mul_(0.01)
|
|
|
-
|
|
|
- def forward(self, inputs, states, masks):
|
|
|
- batch_numel = reduce(operator.mul, inputs.size()[1:], 1)
|
|
|
- inputs = inputs.view(-1, batch_numel)
|
|
|
+ x = self.a_fc2(x)
|
|
|
+ actions = x
|
|
|
|
|
|
- x = self.v_fc1(inputs)
|
|
|
+ x = self.v_fc1(states)
|
|
|
x = F.tanh(x)
|
|
|
-
|
|
|
x = self.v_fc2(x)
|
|
|
x = F.tanh(x)
|
|
|
-
|
|
|
x = self.v_fc3(x)
|
|
|
value = x
|
|
|
|
|
|
- x = self.a_fc1(inputs)
|
|
|
- x = F.tanh(x)
|
|
|
-
|
|
|
- x = self.a_fc2(x)
|
|
|
- x = F.tanh(x)
|
|
|
-
|
|
|
- return value, x, states
|
|
|
-
|
|
|
-def weights_init_cnn(m):
|
|
|
- classname = m.__class__.__name__
|
|
|
- if classname.find('Conv') != -1 or classname.find('Linear') != -1:
|
|
|
- orthogonal(m.weight.data)
|
|
|
- if m.bias is not None:
|
|
|
- m.bias.data.fill_(0)
|
|
|
-
|
|
|
-class CNNPolicy(FFPolicy):
|
|
|
- def __init__(self, num_inputs, action_space, use_gru):
|
|
|
- super(CNNPolicy, self).__init__()
|
|
|
- self.conv1 = nn.Conv2d(num_inputs, 32, 8, stride=4)
|
|
|
- self.conv2 = nn.Conv2d(32, 64, 4, stride=2)
|
|
|
- self.conv3 = nn.Conv2d(64, 32, 3, stride=1)
|
|
|
-
|
|
|
- self.linear1 = nn.Linear(32 * 7 * 7, 512)
|
|
|
-
|
|
|
- if use_gru:
|
|
|
- self.gru = nn.GRUCell(512, 512)
|
|
|
-
|
|
|
- self.critic_linear = nn.Linear(512, 1)
|
|
|
-
|
|
|
- if action_space.__class__.__name__ == "Discrete":
|
|
|
- num_outputs = action_space.n
|
|
|
- self.dist = Categorical(512, num_outputs)
|
|
|
- elif action_space.__class__.__name__ == "Box":
|
|
|
- num_outputs = action_space.shape[0]
|
|
|
- self.dist = DiagGaussian(512, num_outputs)
|
|
|
- else:
|
|
|
- raise NotImplementedError
|
|
|
-
|
|
|
- self.train()
|
|
|
- self.reset_parameters()
|
|
|
-
|
|
|
- @property
|
|
|
- def state_size(self):
|
|
|
- if hasattr(self, 'gru'):
|
|
|
- return 512
|
|
|
- else:
|
|
|
- return 1
|
|
|
-
|
|
|
- def reset_parameters(self):
|
|
|
- self.apply(weights_init_cnn)
|
|
|
-
|
|
|
- relu_gain = nn.init.calculate_gain('relu')
|
|
|
- self.conv1.weight.data.mul_(relu_gain)
|
|
|
- self.conv2.weight.data.mul_(relu_gain)
|
|
|
- self.conv3.weight.data.mul_(relu_gain)
|
|
|
- self.linear1.weight.data.mul_(relu_gain)
|
|
|
-
|
|
|
- if hasattr(self, 'gru'):
|
|
|
- orthogonal(self.gru.weight_ih.data)
|
|
|
- orthogonal(self.gru.weight_hh.data)
|
|
|
- self.gru.bias_ih.data.fill_(0)
|
|
|
- self.gru.bias_hh.data.fill_(0)
|
|
|
-
|
|
|
- if self.dist.__class__.__name__ == "DiagGaussian":
|
|
|
- self.dist.fc_mean.weight.data.mul_(0.01)
|
|
|
-
|
|
|
- def forward(self, inputs, states, masks):
|
|
|
- x = self.conv1(inputs / 255.0)
|
|
|
- x = F.relu(x)
|
|
|
-
|
|
|
- x = self.conv2(x)
|
|
|
- x = F.relu(x)
|
|
|
-
|
|
|
- x = self.conv3(x)
|
|
|
- x = F.relu(x)
|
|
|
-
|
|
|
- x = x.view(-1, 32 * 7 * 7)
|
|
|
- x = self.linear1(x)
|
|
|
- x = F.relu(x)
|
|
|
-
|
|
|
- if hasattr(self, 'gru'):
|
|
|
- x = states = self.gru(x, states * masks)
|
|
|
-
|
|
|
- return self.critic_linear(x), x, states
|
|
|
+ return value, actions, states
|