| 
					
				 | 
			
			
				@@ -1,7 +1,7 @@ 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 import os 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 import numpy 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 import gym 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-from gym.spaces.box import Box 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+from gym import spaces 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				 try: 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				     import gym_minigrid 
			 | 
		
	
	
		
			
				| 
					
				 | 
			
			
				@@ -15,7 +15,9 @@ def make_env(env_id, seed, rank, log_dir): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         env.seed(seed + rank) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        #env = FlatObsWrapper(env) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        # Maxime: until RL code supports dict observations, squash observations into a flat vector 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        if isinstance(env.observation_space, spaces.Dict): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+            env = FlatObsWrapper(env) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				  
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         # If the input has shape (W,H,3), wrap for PyTorch convolutions 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         obs_shape = env.observation_space.shape 
			 | 
		
	
	
		
			
				| 
					
				 | 
			
			
				@@ -30,7 +32,7 @@ class WrapPyTorch(gym.ObservationWrapper): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				     def __init__(self, env=None): 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         super(WrapPyTorch, self).__init__(env) 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				         obs_shape = self.observation_space.shape 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				-        self.observation_space = Box( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				+        self.observation_space = spaces.Box( 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				             self.observation_space.low[0,0,0], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				             self.observation_space.high[0,0,0], 
			 | 
		
	
		
			
				 | 
				 | 
			
			
				             [obs_shape[2], obs_shape[1], obs_shape[0]] 
			 |