浏览代码

Added memory environment created by Dima.

Maxime Chevalier-Boisvert 6 年之前
父节点
当前提交
ce9f07ff8f
共有 3 个文件被更改,包括 178 次插入5 次删除
  1. 22 4
      README.md
  2. 2 1
      gym_minigrid/envs/__init__.py
  3. 154 0
      gym_minigrid/envs/memory.py

+ 22 - 4
README.md

@@ -215,12 +215,30 @@ Registered configurations:
 - `MiniGrid-RedBlueDoors-6x6-v0`
 - `MiniGrid-RedBlueDoors-8x8-v0`
 
+The purpose of this environment is to test memory.
 The agent is randomly placed within a room with one red and one blue door
 facing opposite directions. The agent has to open the red door and then open
-the blue door, in that order. The purpose of this environment is to test
-memory. The agent, when facing one door, cannot see the door behind him.
-Hence, the agent needs to remember whether or not he has previously opened
-the other door in order to reliably succeed at completing the task.
+the blue door, in that order.  The agent, when facing one door, cannot see
+the door behind him. Hence, the agent needs to remember whether or not he has
+previously opened the other door in order to reliably succeed at completing
+the task.
+
+### Memory environment
+
+Registered configurations:
+- `MiniGrid-MemoryS17Random-v0`
+- `MiniGrid-MemoryS13Random-v0`
+- `MiniGrid-MemoryS13-v0`
+- `MiniGrid-MemoryS11-v0`
+- `MiniGrid-MemoryS9-v0`
+- `MiniGrid-MemoryS7-v0`
+
+This environment is a memory test. The agent starts in a small room
+where it sees an object. It then has to go through a narrow hallway
+which ends in a split. At each end of the split there is an object,
+one of which is the same as the object in the starting room. The
+agent has to remember the initial object, and go to the matching
+object at split.
 
 ### Locked room environment
 

+ 2 - 1
gym_minigrid/envs/__init__.py

@@ -12,4 +12,5 @@ from gym_minigrid.envs.unlockpickup import *
 from gym_minigrid.envs.blockedunlockpickup import *
 from gym_minigrid.envs.playground_v0 import *
 from gym_minigrid.envs.redbluedoors import *
-from gym_minigrid.envs.obstructedmaze import *
+from gym_minigrid.envs.obstructedmaze import *
+from gym_minigrid.envs.memory import *

+ 154 - 0
gym_minigrid/envs/memory.py

@@ -0,0 +1,154 @@
+from gym_minigrid.minigrid import *
+from gym_minigrid.register import register
+
+class MemoryEnv(MiniGridEnv):
+    """
+    This environment is a memory test. The agent starts in a small room
+    where it sees an object. It then has to go through a narrow hallway
+    which ends in a split. At each end of the split there is an object,
+    one of which is the same as the object in the starting room. The
+    agent has to remember the initial object, and go to the matching
+    object at split.
+    """
+
+    def __init__(
+        self,
+        seed,
+        size=8,
+        random_length=False,
+    ):
+        self.random_length = random_length
+        super().__init__(
+            seed=seed,
+            grid_size=size,
+            max_steps=5*size**2,
+            # Set this to True for maximum speed
+            see_through_walls=False,
+        )
+
+    def _gen_grid(self, width, height):
+        self.grid = Grid(width, height)
+
+        # Generate the surrounding walls
+        self.grid.horz_wall(0, 0)
+        self.grid.horz_wall(0, height-1)
+        self.grid.vert_wall(0, 0)
+        self.grid.vert_wall(width - 1, 0)
+
+        assert height % 2 == 1
+        upper_room_wall = height // 2 - 2
+        lower_room_wall = height // 2 + 2
+        if self.random_length:
+            hallway_end = self._rand_int(4, width - 2)
+        else:
+            hallway_end = width - 3
+
+        # Start room
+        for i in range(1, 5):
+            self.grid.set(i, upper_room_wall, Wall())
+            self.grid.set(i, lower_room_wall, Wall())
+        self.grid.set(4, upper_room_wall + 1, Wall())
+        self.grid.set(4, lower_room_wall - 1, Wall())
+
+        # Horizontal hallway
+        for i in range(5, hallway_end):
+            self.grid.set(i, upper_room_wall + 1, Wall())
+            self.grid.set(i, lower_room_wall - 1, Wall())
+
+        # Vertical hallway
+        for j in range(0, height):
+            if j != height // 2:
+                self.grid.set(hallway_end, j, Wall())
+            self.grid.set(hallway_end + 2, j, Wall())
+
+        # Fix the player's start position and orientation
+        self.start_pos = (self._rand_int(1, hallway_end + 1), height // 2)
+        self.start_dir = 0
+
+        # Place objects
+        start_room_obj = self._rand_elem([Key, Ball])
+        self.grid.set(3, height // 2 - 1, start_room_obj('green'))
+
+        other_objs = self._rand_elem([[Ball, Key], [Key, Ball]])
+        pos0 = (hallway_end + 1, height // 2 - 2)
+        pos1 = (hallway_end + 1, height // 2 + 2)
+        self.grid.set(*pos0, other_objs[0]('green'))
+        self.grid.set(*pos1, other_objs[1]('green'))
+
+        # Choose the target objects
+        if start_room_obj == other_objs[0]:
+            self.success_pos = (pos0[0], pos0[1] + 1)
+            self.failure_pos = (pos1[0], pos1[1] - 1)
+        else:
+            self.success_pos = (pos1[0], pos1[1] - 1)
+            self.failure_pos = (pos0[0], pos0[1] + 1)
+
+        self.mission = 'go to the matching object at the end of the hallway'
+
+    def step(self, action):
+        if action == MiniGridEnv.Actions.pickup:
+            action = MiniGridEnv.Actions.toggle
+        obs, reward, done, info = MiniGridEnv.step(self, action)
+
+        if tuple(self.agent_pos) == self.success_pos:
+            reward = self._reward()
+            done = True
+        if tuple(self.agent_pos) == self.failure_pos:
+            reward = 0
+            done = True
+
+        return obs, reward, done, info
+
+class MemoryS17Random(MemoryEnv):
+    def __init__(self, seed=None):
+        super().__init__(seed=seed, size=17, random_length=True)
+
+register(
+    id='MiniGrid-MemoryS17Random-v0',
+    entry_point='gym_minigrid.envs:MemoryS17Random',
+)
+
+class MemoryS13Random(MemoryEnv):
+    def __init__(self, seed=None):
+        super().__init__(seed=seed, size=13, random_length=True)
+
+register(
+    id='MiniGrid-MemoryS13Random-v0',
+    entry_point='gym_minigrid.envs:MemoryS13Random',
+)
+
+class MemoryS13(MemoryEnv):
+    def __init__(self, seed=None):
+        super().__init__(seed=seed, size=13)
+
+register(
+    id='MiniGrid-MemoryS13-v0',
+    entry_point='gym_minigrid.envs:MemoryS13',
+)
+
+class MemoryS11(MemoryEnv):
+    def __init__(self, seed=None):
+        super().__init__(seed=seed, size=11)
+
+register(
+    id='MiniGrid-MemoryS11-v0',
+    entry_point='gym_minigrid.envs:MemoryS11',
+)
+
+class MemoryS9(MemoryEnv):
+    def __init__(self, seed=None):
+        super().__init__(seed=seed, size=9)
+
+register(
+    id='MiniGrid-MemoryS9-v0',
+    entry_point='gym_minigrid.envs:MemoryS9',
+)
+
+class MemoryS7(MemoryEnv):
+    def __init__(self, seed=None):
+        super().__init__(seed=seed, size=7)
+
+register(
+    id='MiniGrid-MemoryS7-v0',
+    entry_point='gym_minigrid.envs:MemoryS7',
+)