from gym_minigrid.minigrid import * from gym_minigrid.register import register class PutNearEnv(MiniGridEnv): """ Environment in which the agent is instructed to place an object near another object through a natural language string. """ def __init__( self, size=6, numObjs=2 ): self.numObjs = numObjs super().__init__(gridSize=size, maxSteps=5*size) self.observation_space = spaces.Dict({ 'image': self.observation_space }) self.reward_range = (-1, 1) def _genGrid(self, width, height): # Create a grid surrounded by walls grid = Grid(width, height) for i in range(0, width): grid.set(i, 0, Wall()) grid.set(i, height-1, Wall()) for j in range(0, height): grid.set(0, j, Wall()) grid.set(width-1, j, Wall()) # Types and colors of objects we can generate types = ['key', 'ball'] colors = list(COLORS.keys()) objs = [] objPos = [] def nearObj(p1): for p2 in objPos: dx = p1[0] - p2[0] dy = p1[1] - p2[1] if abs(dx) <= 1 and abs(dy) <= 1: return True return False # Until we have generated all the objects while len(objs) < self.numObjs: objType = self._randElem(types) objColor = self._randElem(colors) # If this object already exists, try again if (objType, objColor) in objs: continue if objType == 'key': obj = Key(objColor) elif objType == 'ball': obj = Ball(objColor) elif objType == 'box': obj = Box(objColor) while True: pos = ( self._randInt(1, width - 1), self._randInt(1, height - 1) ) if nearObj(pos): continue if pos == self.startPos: continue grid.set(*pos, obj) break objs.append((objType, objColor)) objPos.append(pos) # Choose a random object to be moved objIdx = self._randInt(0, len(objs)) self.moveType, self.moveColor = objs[objIdx] self.movePos = objPos[objIdx] # Choose a target object (to put the first object next to) while True: targetIdx = self._randInt(0, len(objs)) if targetIdx != objIdx: break self.targetType, self.targetColor = objs[targetIdx] self.targetPos = objPos[targetIdx] self.mission = 'put the %s %s near the %s %s' % ( self.moveColor, self.moveType, self.targetColor, self.targetType ) return grid def _observation(self, obs): """ Encode observations """ obs = { 'image': obs, 'mission': self.mission } return obs def _reset(self): obs = MiniGridEnv._reset(self) return self._observation(obs) def _step(self, action): preCarrying = self.carrying obs, reward, done, info = MiniGridEnv._step(self, action) u, v = self.getDirVec() ox, oy = (self.agentPos[0] + u, self.agentPos[1] + v) tx, ty = self.targetPos # Pickup/drop action if action == self.actions.toggle: # If we picked up the wrong object, terminate the episode if self.carrying: if self.carrying.type != self.moveType or self.carrying.color != self.moveColor: done = True # If successfully dropping an object near the target if preCarrying: if self.grid.get(ox, oy) is preCarrying: if abs(ox - tx) <= 1 and abs(oy - ty) <= 1: reward = 1 done = True obs = self._observation(obs) return obs, reward, done, info class PutNear8x8N3(PutNearEnv): def __init__(self): super().__init__(size=8, numObjs=3) register( id='MiniGrid-PutNear-6x6-N2-v0', entry_point='gym_minigrid.envs:PutNearEnv' ) register( id='MiniGrid-PutNear-8x8-N3-v0', entry_point='gym_minigrid.envs:PutNear8x8N3' )