import os import numpy import gym from gym import spaces try: import gym_minigrid from gym_minigrid.wrappers import * except: pass def make_env(env_id, seed, rank, log_dir): def _thunk(): env = gym.make(env_id) env.seed(seed + rank) # Maxime: until RL code supports dict observations, squash observations into a flat vector if isinstance(env.observation_space, spaces.Dict): env = FlatObsWrapper(env) # If the input has shape (W,H,3), wrap for PyTorch convolutions obs_shape = env.observation_space.shape if len(obs_shape) == 3 and obs_shape[2] == 3: env = WrapPyTorch(env) return env return _thunk class WrapPyTorch(gym.ObservationWrapper): def __init__(self, env=None): super(WrapPyTorch, self).__init__(env) obs_shape = self.observation_space.shape self.observation_space = spaces.Box( self.observation_space.low[0,0,0], self.observation_space.high[0,0,0], [obs_shape[2], obs_shape[1], obs_shape[0]] ) def _observation(self, observation): return observation.transpose(2, 0, 1)