123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240 |
- import math
- import torch
- import torch.optim as optim
- import torch.nn as nn
- import torch.nn.functional as F
- from utils import AddBias
- # TODO: In order to make this code faster:
- # 1) Implement _extract_patches as a single cuda kernel
- # 2) Compute QR decomposition in a separate process
- # 3) Actually make a general KFAC optimizer so it fits PyTorch
- def _extract_patches(x, kernel_size, stride, padding):
- if padding[0] + padding[1] > 0:
- x = F.pad(x, (padding[1], padding[1], padding[0],
- padding[0])).data # Actually check dims
- x = x.unfold(2, kernel_size[0], stride[0])
- x = x.unfold(3, kernel_size[1], stride[1])
- x = x.transpose_(1, 2).transpose_(2, 3).contiguous()
- x = x.view(
- x.size(0), x.size(1), x.size(2), x.size(3) * x.size(4) * x.size(5))
- return x
- def compute_cov_a(a, classname, layer_info, fast_cnn):
- batch_size = a.size(0)
- if classname == 'Conv2d':
- if fast_cnn:
- a = _extract_patches(a, *layer_info)
- a = a.view(a.size(0), -1, a.size(-1))
- a = a.mean(1)
- else:
- a = _extract_patches(a, *layer_info)
- a = a.view(-1, a.size(-1)).div_(a.size(1)).div_(a.size(2))
- elif classname == 'AddBias':
- is_cuda = a.is_cuda
- a = torch.ones(a.size(0), 1)
- if is_cuda:
- a = a.cuda()
- return a.t() @ (a / batch_size)
- def compute_cov_g(g, classname, layer_info, fast_cnn):
- batch_size = g.size(0)
- if classname == 'Conv2d':
- if fast_cnn:
- g = g.view(g.size(0), g.size(1), -1)
- g = g.sum(-1)
- else:
- g = g.transpose(1, 2).transpose(2, 3).contiguous()
- g = g.view(-1, g.size(-1)).mul_(g.size(1)).mul_(g.size(2))
- elif classname == 'AddBias':
- g = g.view(g.size(0), g.size(1), -1)
- g = g.sum(-1)
- g_ = g * batch_size
- return g_.t() @ (g_ / g.size(0))
- def update_running_stat(aa, m_aa, momentum):
- # Do the trick to keep aa unchanged and not create any additional tensors
- m_aa *= momentum / (1 - momentum)
- m_aa += aa
- m_aa *= (1 - momentum)
- class SplitBias(nn.Module):
- def __init__(self, module):
- super(SplitBias, self).__init__()
- self.module = module
- self.add_bias = AddBias(module.bias.data)
- self.module.bias = None
- def forward(self, input):
- x = self.module(input)
- x = self.add_bias(x)
- return x
- class KFACOptimizer(optim.Optimizer):
- def __init__(self,
- model,
- lr=0.25,
- momentum=0.9,
- stat_decay=0.99,
- kl_clip=0.001,
- damping=1e-2,
- weight_decay=0,
- fast_cnn=False,
- Ts=1,
- Tf=10):
- defaults = dict()
- def split_bias(module):
- for mname, child in module.named_children():
- if hasattr(child, 'bias'):
- module._modules[mname] = SplitBias(child)
- else:
- split_bias(child)
- split_bias(model)
- super(KFACOptimizer, self).__init__(model.parameters(), defaults)
- self.known_modules = {'Linear', 'Conv2d', 'AddBias'}
- self.modules = []
- self.grad_outputs = {}
- self.model = model
- self._prepare_model()
- self.steps = 0
- self.m_aa, self.m_gg = {}, {}
- self.Q_a, self.Q_g = {}, {}
- self.d_a, self.d_g = {}, {}
- self.momentum = momentum
- self.stat_decay = stat_decay
- self.lr = lr
- self.kl_clip = kl_clip
- self.damping = damping
- self.weight_decay = weight_decay
- self.fast_cnn = fast_cnn
- self.Ts = Ts
- self.Tf = Tf
- self.optim = optim.SGD(
- model.parameters(),
- lr=self.lr * (1 - self.momentum),
- momentum=self.momentum)
- def _save_input(self, module, input):
- if input[0].volatile == False and self.steps % self.Ts == 0:
- classname = module.__class__.__name__
- layer_info = None
- if classname == 'Conv2d':
- layer_info = (module.kernel_size, module.stride,
- module.padding)
- aa = compute_cov_a(input[0].data, classname, layer_info,
- self.fast_cnn)
- # Initialize buffers
- if self.steps == 0:
- self.m_aa[module] = aa.clone()
- update_running_stat(aa, self.m_aa[module], self.stat_decay)
- def _save_grad_output(self, module, grad_input, grad_output):
- if self.acc_stats:
- classname = module.__class__.__name__
- layer_info = None
- if classname == 'Conv2d':
- layer_info = (module.kernel_size, module.stride,
- module.padding)
- gg = compute_cov_g(grad_output[0].data, classname,
- layer_info, self.fast_cnn)
- # Initialize buffers
- if self.steps == 0:
- self.m_gg[module] = gg.clone()
- update_running_stat(gg, self.m_gg[module], self.stat_decay)
- def _prepare_model(self):
- for module in self.model.modules():
- classname = module.__class__.__name__
- if classname in self.known_modules:
- assert not ((classname in ['Linear', 'Conv2d']) and module.bias is not None), \
- "You must have a bias as a separate layer"
- self.modules.append(module)
- module.register_forward_pre_hook(self._save_input)
- module.register_backward_hook(self._save_grad_output)
- def step(self):
- # Add weight decay
- if self.weight_decay > 0:
- for p in self.model.parameters():
- p.grad.data.add_(self.weight_decay, p.data)
- updates = {}
- for i, m in enumerate(self.modules):
- assert len(list(m.parameters())
- ) == 1, "Can handle only one parameter at the moment"
- classname = m.__class__.__name__
- p = next(m.parameters())
- la = self.damping + self.weight_decay
- if self.steps % self.Tf == 0:
- # My asynchronous implementation exists, I will add it later.
- # Experimenting with different ways to this in PyTorch.
- self.d_a[m], self.Q_a[m] = torch.symeig(
- self.m_aa[m], eigenvectors=True)
- self.d_g[m], self.Q_g[m] = torch.symeig(
- self.m_gg[m], eigenvectors=True)
- self.d_a[m].mul_((self.d_a[m] > 1e-6).float())
- self.d_g[m].mul_((self.d_g[m] > 1e-6).float())
- if classname == 'Conv2d':
- p_grad_mat = p.grad.data.view(p.grad.data.size(0), -1)
- else:
- p_grad_mat = p.grad.data
- v1 = self.Q_g[m].t() @ p_grad_mat @ self.Q_a[m]
- v2 = v1 / (
- self.d_g[m].unsqueeze(1) * self.d_a[m].unsqueeze(0) + la)
- v = self.Q_g[m] @ v2 @ self.Q_a[m].t()
- v = v.view(p.grad.data.size())
- updates[p] = v
- vg_sum = 0
- for p in self.model.parameters():
- v = updates[p]
- vg_sum += (v * p.grad.data * self.lr * self.lr).sum()
- nu = min(1, math.sqrt(self.kl_clip / vg_sum))
- for p in self.model.parameters():
- v = updates[p]
- p.grad.data.copy_(v)
- p.grad.data.mul_(nu)
- self.optim.step()
- self.steps += 1
|