| 123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135 | from gym_minigrid.minigrid import *from gym_minigrid.register import registerclass PutNearEnv(MiniGridEnv):    """    Environment in which the agent is instructed to place an object near    another object through a natural language string.    """    def __init__(        self,        size=6,        numObjs=2    ):        self.numObjs = numObjs        super().__init__(gridSize=size, maxSteps=5*size)        self.reward_range = (-1, 1)    def _genGrid(self, width, height):        # Create a grid surrounded by walls        grid = Grid(width, height)        for i in range(0, width):            grid.set(i, 0, Wall())            grid.set(i, height-1, Wall())        for j in range(0, height):            grid.set(0, j, Wall())            grid.set(width-1, j, Wall())        # Types and colors of objects we can generate        types = ['key', 'ball']        colors = list(COLORS.keys())        objs = []        objPos = []        def nearObj(p1):            for p2 in objPos:                dx = p1[0] - p2[0]                dy = p1[1] - p2[1]                if abs(dx) <= 1 and abs(dy) <= 1:                    return True            return False        # Until we have generated all the objects        while len(objs) < self.numObjs:            objType = self._randElem(types)            objColor = self._randElem(colors)            # If this object already exists, try again            if (objType, objColor) in objs:                continue            if objType == 'key':                obj = Key(objColor)            elif objType == 'ball':                obj = Ball(objColor)            elif objType == 'box':                obj = Box(objColor)            while True:                pos = (                    self._randInt(1, width - 1),                    self._randInt(1, height - 1)                )                if nearObj(pos):                    continue                if pos == self.startPos:                    continue                grid.set(*pos, obj)                break            objs.append((objType, objColor))            objPos.append(pos)        # Choose a random object to be moved        objIdx = self._randInt(0, len(objs))        self.moveType, self.moveColor = objs[objIdx]        self.movePos = objPos[objIdx]        # Choose a target object (to put the first object next to)        while True:            targetIdx = self._randInt(0, len(objs))            if targetIdx != objIdx:                break        self.targetType, self.targetColor = objs[targetIdx]        self.targetPos = objPos[targetIdx]        self.mission = 'put the %s %s near the %s %s' % (            self.moveColor,            self.moveType,            self.targetColor,            self.targetType        )        return grid    def step(self, action):        preCarrying = self.carrying        obs, reward, done, info = MiniGridEnv.step(self, action)        u, v = self.getDirVec()        ox, oy = (self.agentPos[0] + u, self.agentPos[1] + v)        tx, ty = self.targetPos        # Pickup/drop action        if action == self.actions.toggle:            # If we picked up the wrong object, terminate the episode            if self.carrying:                if self.carrying.type != self.moveType or self.carrying.color != self.moveColor:                    done = True            # If successfully dropping an object near the target            if preCarrying:                if self.grid.get(ox, oy) is preCarrying:                    if abs(ox - tx) <= 1 and abs(oy - ty) <= 1:                        reward = 1                done = True        return obs, reward, done, infoclass PutNear8x8N3(PutNearEnv):    def __init__(self):        super().__init__(size=8, numObjs=3)register(    id='MiniGrid-PutNear-6x6-N2-v0',    entry_point='gym_minigrid.envs:PutNearEnv')register(    id='MiniGrid-PutNear-8x8-N3-v0',    entry_point='gym_minigrid.envs:PutNear8x8N3')
 |